
Learning a Semantic Representation of Atomic Entities
for Salary Prediction

Keith Chewning
Burning Glass Technologies

Boston, MA
kchewning@burning-glass.com

Zhiyuan Liu
Burning Glass Technologies

Boston, MA
zliu@burning-glass.com

Manish Gaurav
Burning Glass Technologies

Boston, MA
mgaurav@burning-glass.com

ABSTRACT
Salary is an essential component of any job. Job candidates indicate
that they would like to see salary more than any other feature in
a job posting.1 Intuitively, people have linear expectations about
salary. For instance, a person with more experience should earn
a higher salary than a person with less experience. Given the im-
portance of salary and peoples’ intuition about salary, a salary
modeling task must understand the semantic nature of the input
features in order to produce predictions sufficient to one’s expecta-
tions. We will detail the model selection process and relative model
performance of deep neural networks built for this task and how
feature weighting is incorporated into these models. We will then
look at evaluation of the model both from a quantitative and qual-
itative view. This qualitative evaluation will show the network’s
understanding of semantic structure inherent in the input data.
Finally, we introduce a novel method to jointly gain insight into
feature importance of the artificial neural network and to perform
variance-reducing model averaging, a form of auto-ensembling.

KEYWORDS
Deep Learning, Artificial Neural Networks, Semantic Learning,
Regression

1 INTRODUCTION
Burning Glass Technologies (BGT), founded in 1999, is an analytics
software company that continually collects job posting data from
more than 45,000 online sources. Job postings are obtained from
online job boards and company websites through BGT’s spidering
technology. The BGT database consists of more than 700 million job
listings. Approximately 80% of all collected postings are determined
to be duplicates and discarded. This ensures that the BGT database
contains unique postings. Each job posting is parsed to extract more
than 50 unique data elements. Additionally, there is a detailed BGT
taxonomywhich includes occupational and skill hierarchies. Robust
and nuanced salary data, like the BGT dataset, is an important part
of any labor market analysis task.

Utilizing the BGT job posting dataset, there are a number of
applications which we planned to address in the development of
this model.

(1) Provide predicted salaries for all job postings in the BGT
database.

(2) Aggregate salary information based on parsed and tagged
features.

(3) Predict salary for a ”custom job“ based on user input features.

1A 2016 CareerBuilder survey [2] indicates that 74% of candidates want to see salary
more than any other feature.

(4) Provide insight into the relative importance of the input
features to the model.

Only about 15% of BGT job postings have parsed salary informa-
tion. Given that salary is a very important feature [2] of a job post-
ing, we want the ability to provide predicted salary information for
every job posting in the database. Item (2) above is a product-level
application of Item (1). Given salary predictions for all job postings,
aggregate statistics are simply SQL queries over pre-computed
predictions. While straightforward, we cannot assume that this
methodology will produce reasonable results. So, this is something
that needs to be evaluated.

Item (3) above provides users the opportunity to generate salary
predictions in real-time, not by querying pre-computed predictions
over existing job postings. In particular, users may type in titles and
select taxonomic features to generate salaries for jobs with unique
features. In order to accomplish this, the model needs to properly
generalize. Due to data sparsity, it is likely that user generated job
features could be distant from what the model observed during
training. The generalization of the model must be tested to observe
the model under these conditions.

Item (4) is meant to provide insight into the relative importance
of the input features. Neural network models are notoriously con-
sidered “black-box” models. A novel approach is considered to
gain insight into how to interpret an input features’ influence on
predicted salary.

While addressing the above items the following are main contri-
butions of this paper.

(1) To build a highly generalizable deep neural network model
which marries both semantic learning and predictive accu-
racy.

(2) To explore and promote a diverse set of model testing crite-
ria. Here we introduce qualitative analysis which is critical
to having a comprehensive performance evaluation of the
model.

(3) To develop a methodology, usable at prediction time, which
jointly provides insight into relative feature importance at
the record level and to improve the predictive capacity of
the model.

The development phase of the salary model, which leverages
BGT data, and its evaluation is complete. Engineering effort for
production deployment is currently in-progress and release of the
system is scheduled at the end of the first quarter, 2018.

2 RELATEDWORK
In 2013, Kaggle, an online platform for predictive modeling com-
petitions, hosted a competition for Adzuna [5] to predict salary

directly from job posting text. The winner of this competition, Vlad
Mnih, finished with a mean absolute error (MAE) of 3464. Judging
from the text of the job postings, the most probable conclusion is
that the currency of the salary in this competition is British Pounds.
Using an exchange rate of 1.56 [7], which is a reasonable exchange
rate at the time of the competition, this MAE would equate to about
5403 USD. For comparison, we can use this a rough baseline for
comparing the MAE or our model. This competition expected, as
input into the model, the full job text. The model proposed here
leverages parsed features from a job text as input into the model
and does not consider the full job text. The reason for this decision
is to allow for all of the applications stated above. User selected
skills and taxonomy features would not be possible by conforming
ourselves to raw job text.

Both LinkedIn [9] and Stack Overflow [6] now offer salary in-
formation. LinkedIn is concerned about user anonymity and takes
great pains to enforce this requirement. Their salary model predicts
user earnings where the BGT model predicts posted salaries. Pre-
sumably these are very similar, but they are not exactly the same
thing. LinkedIn salary information is based on cohorts, which aggre-
gate data by occupation and location (and potentially other features).
The BGT model on the other hand seeks a granular per-posting
view which discerns the individuality of a particular posting.

The Stack Overflow Salary Calculator is based on a survey of
64000 software developers. Similar to LinkedIn, Stack Overflow
shows salaries based on aggregates (e.g. rôle and location), but they
do provide an extra layer of granularity by incorporating skills. The
most prominent difference between the Stack Overflow Salary Cal-
culator and the BGT salary model is that Stack Overflow operates
on a very narrow occupational window of just software developers.
The BGT salary model is designed to model full spectrum occupa-
tions in the US labor market.

3 DATA
In the Burning Glass job postings database, each posting is parsed
to extract and code more than 50 unique data elements. This parsing
process extracts information from the job posting, like employer,
location, and credentials. BGT places particular care in coding occu-
pations and industries. Occupational coding consists of ascertaining
entities from the BGT taxonomy, which is more granular and flexi-
ble then government occupation codes in order to adapt quickly to
emerging markets. Occupational coding for postings also includes
government occupational taxonomies like O*NET and SOC2 codes.

The salary model described in this paper leverages these ex-
tracted entities and coded fields as input into the model. Specifically,
we only use a small subset of these features:
• Title: title of the posting,
• Skills: relevant skills to the posting,
• MSA: metropolitan statistical area,3
• NAICS: North American Industry Classification System,4
• Employer: employer name,
• Education: educational requirements,

2The Standard Occupational Coding is a federal occupational coding system. More
information is located as https://www.bls.gov/soc/. The more granular O*NET-SOC
taxonomy is located as https://www.onetcenter.org/taxonomy.html.
3https://en.wikipedia.org/wiki/Metropolitan_statistical_area
4https://en.wikipedia.org/wiki/North_American_Industry_Classification_System

Table 1: Occupational Taxonomy

Hierarchy Examples

CareerArea Information Technology, Finance, Sales
OccGroup Visual Design, Software Development
BGTOcc K–12 Teaching, Database Architects
SubOcc Air Traffic Controller, Python Developer

Table 2: Skills Taxonomy

Hierarchy Examples

SkillClusterFamily Human Resources, Legal, Health Care
SkillCluster Advertising, Big Data, Solar Energy
Skills Biochemistry, Forklift Operation

• Experience: years of experience, and
• OccGroup: occupational group.

All input features are optional. All fields may be user-defined,
with the exception of OccGroup, which is inferred from the title
prior to input into the model (if available). This occupational group
label is used to provided input feature weighting, which will be
described below. Title is the only free text field and all other features
are taken as atomic entities.

The BGT taxonomic database leveraged here includes occupation
and skills data. The occupational hierarchy is of the form

CareerArea → OccGroup → BGTOcc → SubOcc .

CareerAreas are the highest level of occupational grouping in the
BGT taxonomy. SubOccs (sub-occupations) are specialized occupa-
tions and provide a more nuanced view of jobs relevant for busi-
nesses and mid-career professionals. The next level of occupational
granularity is job posting title, which is exempt from the BGT tax-
onomy. See Table 1 for occupational taxonomy examples. For input
features, we only consider OccGroup from the occupational tax-
onomy, which is a feature of the model. Later we will reference
SubOcc as a means of aggregating results.

The skill hierarchy is of the form

SkillClusterFamily → SkillCluster → Skill .

See Table 2 for skills taxonomy examples. The salary model only
considers skills from this taxonomy.

The data used for this model was split into train and test sets.
The training set consisted of 5M job postings from years 2016 and
2017. The test set is a 2.5M set from 2017. About 15% of the BGT
dataset has parsed salary information. This data was further subset
to retain only records whose salary fell with a given salary range
per SubOcc. These ranges were defined based on historical data
aggregated by SubOcc; outlier gold salaries falling outside the 5th
and 95th percentile aggregates were excluded from training. This
final set of data is what comprised the 5M/2.5M split.

Data observed during training typically had most fields popu-
lated. Given a user-defined input as suggested in Item (3) of the
Introduction, a typical input might look like the following:
• OccGroup: Human Resources Specialists

2

https://www.bls.gov/soc/
https://www.onetcenter.org/taxonomy.html
https://en.wikipedia.org/wiki/Metropolitan_statistical_area
https://en.wikipedia.org/wiki/North_American_Industry_Classification_System

• Title: Human Resources Administrative Assistant
• MSA: Bennington, VT
• Experience: 4 years
• Skills: Administrative Support, HRIS, Benefits Administra-
tion, Travel Arrangements, Office Supply Ordering, I-9 Au-
dits, Payroll Processing, Data Entry, Onboarding, Mail Dis-
tribution, Calendar Management, Telephone Skills

The predicted salary for a rôle with these features is 39,360 USD.
All salaries, both gold and predicted, are annualized and in USD.
Hourly wage jobs are also annualized so that we are predicting
values in the same units, USD/year.

4 FEATURE EXTRACTION
The features for this model create an extremely sparse input. Given
that (free text) titles are tokenized, this alone could produce an
infinite number of possibilities. This, in addition to all possible taxo-
nomic inputs creates a very large feature space. A large feature space
will produce a bottleneck for efficient learning. In order to com-
pensate for this we leverage Scikit-learn’s HashingVectorizer [13],
which utilizes the “hashing trick.”5 This reduces the dimensionality
of a feature space to a fixed size, which is accomplished by hashing
each input feature. The value of the hashed feature is used as its
column index in the new hashing space.

We refer to the raw text input into the model as features. These
text features are transformed into numeric data prior to sending
data to the model. This numeric input we refer to as its param-
eters, generic values in hashing space. This feature to parameter
transformation goes through a number steps. The input features
are bisected into two categories—weighted and unweighted. The
weighted features are title and skills. All other features are un-
weighted. Unweighted features are assigned a value based on their
frequency count. For the weighted features, the title is tokenized
and skills are taken as atomic entities. Their weights are determined
by a modified TF-IDF weighting scheme, where we utilize ICF or
inverse category frequency as detailed in [16].

Independent of the model, but based on the training data, we
formulate a sparse TF-ICF category-term matrix, M . The dimen-
sionality of this matrix is the number of OccGroups by the dimen-
sionality of the hashing space. We concatenate all skills and titles
by OccGroup; this represents one category (row) inM . The scalar
Mi j is the TF-ICF value of OccGroup i and hashed feature j . To
be concrete, we may be given a job posting whose OccGroup is
Business Intelligence and a particular skill in this posting is Python.
If the index of Business Intelligence is row 98 and the hashed index
of Python is column 41, thenM98,41 is the weight assigned to Python
for this posting. The effect of this is to down-weight highly preva-
lent inter-OccGroup skill and title words. In the Business Intelligence
OccGroup, we would not want to give a high weight to Microsoft
Excel, this cross-cutting skill would be just as prevalent in an ad-
ministrative function. If we had Tableau Software, however, this
would be much more relevant to this OccGroup and should likewise
receive a higher weighting. So, a particular skill or title word will
have different weighting per OccGroup. The matrix weights are
created in the following manner. Here, a term t is a hashed feature,
a category c is an OccGroup, and the corpus is C, where c is in C.
5 This technique was popularized by Vowpal Wabbit [10].

The weights ofM are determined by the TF-ICF formula

tficf(C, c, t) = tf(c, t) × icf(C, t)

where tf(c, t) is the count of term t in c and

icf(C, t) = log
1 + |C|

1 + cf(C, t)
+ 1.

The value cf(C, t) is the count of term t in across all categories
in corpus C. So,Mi j = tficf(C, i, j).We further scale the nonzero
values ofM with an empirical weighting formula to constrain its
range to [1, 3] with the formula

Mi j ←
log(min(max(1, Mi j), 2000))

4
+ 1.

As stated previously, the intuition here is that prevalent inter-
OccGroup features will have diminished weights due to its ICF
penalty.

We now have two input parameter matrices, weighted and un-
weighted of equal dimensionality. To merge these two parameter
matrices, we take the element-wise maximum to derive the final
input matrix. This numeric parameter matrix is the input into the
model.

5 DEEP NEURAL NETWORK MODEL
The model used here is a deep neural network model built with the
Keras [3] neural network API. As a baseline, we use a feedforward
neural network model as proposed in [12]. The dimension of the
hashing space is 215–the dimensionality of the input layer. There
are three hidden layers of dimensions 1000, 300, and 300. For the
selected model there is an L1 weight regularization, with a factor of
0.01, on these layers. The final layer is a single output node for the
regression estimation. The activation function of the hidden layers
is a Leaky ReLU with an α of 0.2. Prior to each activation we use
batch normalization and no bias for these layers as proposed in [8].
The final output layer is a linear layer. The Adam optimizer is used
and we optimize with the mean square error (MSE) loss function.
We also evaluate the mean absolute error (MAE) of the model to
have an evaluation metric in USD. See Algorithm 1 for the model
pipeline. The Dropped Feature Analysis discussed below leverages
get_salary by serial execution of this function.

5.1 Baseline Model and Model Selection
As an initial model we developed a three hidden-layer feedforward
network with no regularization and no feature weighting. This
model had a test set MAE of 4599. The base model as shown in
Table 3 incorporates feature weighting as described above. This
model had a test set MAE of 4216. All subsequent models utilize
this same feature weighting. For comparison, the MAE of the model
for the Adzuna Kaggle competition was 5403 (currency adjusted
to USD). While not an exact comparison because of differences in
input to the models, this does provide some context for evaluation
of MAE. Given that neural network models are high variance mod-
els, we were concerned with overfitting of this model. We built
15 additional models with different configurations as detailed in
Table 3 to address this concern. Models 2 and 3 implemented a
dense residual network as proposed in [4], which provided some
benefit. Extremely deep residual models were not tested. Model 3
uses a dual node output layer. The training data consists of a salary

3

Algorithm 1:Model Pipeline
Data: raw input feature set F , training data T , list of unique

OccGroups G, feature_dim = 215

Result: predicted salary
def weight_matrix():

group and concatenate all title tokens and

skills of T by OccGroup

TOccGroup := group_concat(T);
hash to size feature_dim
Thash := hash(TOccGroup);
category-term matrix

Tctm := ctm(Thash);
Ttficf := tficf(Tctm);
rescale weight matrix

M := scale(Ttficf);
return M;

def get_salary(F, M):
o := occgroup(F);
д := index_where(G = o);
u := unweighted_features(F);
w := weighted_features(F);
uhash := hash(u);
whash := hash(w);
U := tf(uhash);
W := zeros(f eature_dim);
update W with nonzero indices of whash
W := M[д, nonzero(whash)];
P := elementwise_max(U ,W);
neural network net, predicted salary ŷ

ŷ := net(P);
return ŷ;

One-time initialization

M := weight_matrix ();
Prediction

prediction := get_salary (F ,M);

range—a minimum and maximum salary. This model is trained to
learn both of these quantities. The interesting thing to note here is
that the MAE for the minimum salary is greater than that of the
maximum salary, which implies that there is greater uncertainty
in the lower bound of the salaries. For all other models, the gold
salary value is the mean of the minimum and maximum salary for
a particular posting. Models 4 and 5 were a comparison between
L1 and L2 regularization. Here, L1 regularization showed improve-
ment. Compared to the base model, we can also see the effect of
adding regularization to the model.

As discussed in Item (3) of the Introduction, models 6–10 were
meant to address a certain applications of the model. It is possible
that the parsed features observed during training are of a different
distribution then what we may see at prediction time. In particular,
a user may request a salary with just a title and one or two skills.
This extreme sparsity of input is different from the training data

where for most postings, many of the fields are populated. So, these
models were meant to see how the model would be effected by
removal of features. Model 6 implements input dropout, where we
randomly drop 30% of the input features. This is not to be confused
with standard dropout, which was utilized in model 10. Models
8 and 9 completely remove the specified features, where Edu is
education and Exp is experience. As expected, the MAE of these
models is higher but this penalty is not prohibitive, which implies
that even with a sparser input there is still a signal in the other
fields by which we may create a reasonable prediction. The worst-
performing of these models is model 10 which utilized dropout.
The rationale for this behavior is described in [11], which indicates
that using dropout with sparse input is equivalent to reducing the
amount of training data.

Model 12 was trained to confirm we were not overfitting the
model with too many model parameters. This is a two hidden-
layer network, which was the worst performing model of any that
were trained, indicating that the model is not over-parameterized.
The rest of the models test different regularization in conjunction
with batch normalization. The best performing model 15, which
is the base model with the addition of batch normalization and
L1 regularization. The MAE of this model is 3844, an 8.8% MAE
improvement when compared to the base model. In all models, early
stopping was employed to avoid overfitting. At the epoch where
test error started to bottom out, this checkpoint was used for the
evaluation metrics in Table 3.

6 RESULTS AND EVALUATION
We now present a comparison between the base and final model and
evaluation of the final model. For simplicity, wewill refer to the final
model asmodel15. MAE is one view of model performance. The base
model has an MAE of 4216 and model15, 3844. This metric provides
a global measurement of the model; on average, a predicted salary
may deviate from the gold salary by about 3844 USD. While this
shows some comparison between models, the reason for building
new models was to reduce variance and improve generalization. To
make this comparison, we look at a more granular view to see if
there is variation in model performance at this level.

6.1 Normalized MAE
Observing MAE at the SubOcc level (the most granular BGT occu-
pation classification) may skew the interpretation of this metric.
An absolute deviation 2000 USD for a Hostess, where the gold salary
$25000, is of a different relative scale than a 2000 USD deviation for
a Mechanical Engineer, where the gold salary is $60000. In order to
have a scale-invariant metric across SubOccs, we normalize these
values.

For a given dataset D = {(X1,y1), (X2,y2), . . . , (Xn ,yn)}, yi is
the gold salary for a particular posting and ŷi = f (Xi) is its pre-
dicted salary. We may partitionD by SubOcc into a set of mutually
exclusive sets

Dj = {(X j ,yj) | j ∈ SubOcc},

4

Table 3: Model Comparison

Model # Notes L1 L2 Input Dropout Batch Normalization Dropout Skills Edu Exp Epochs MAE

0 ∗ ✓ ✓ ✓ 15 4599
1 ⋆ ✓ ✓ ✓ 15 4216
2 † ✓ ✓ ✓ ✓ 15 4109
3 ‡ ✓ ✓ ✓ ✓ 15 4630/4098⋄
4 ✓ ✓ ✓ ✓ 15 4776
5 ✓ ✓ ✓ ✓ 10 4607
6 ✓ ✓ ✓ ✓ ✓ 10 4711
7 ✓ ✓ ✓ ✓ ✓ ✓ 10 4651
8 ✓ ✓ 10 4798
9 10 4942
10 ✓ ✓ ✓ ✓ ✓ 10 5201
11 ✓ ✓ ✓ ✓ 10 4156
12 □ ✓ ✓ ✓ ✓ 11 5348
13 ✓ ✓ ✓ ✓ ✓ 10 4315
14 ✓ ✓ ✓ ✓ 9 3865
15 ✓ ✓ ✓ ✓ ✓ 12 3844
15a ◦ ✓ ✓ ✓ ✓ ✓ 12 3553
∗ no TF-ICF feature weighting
⋆ base model
† residual model
‡ residual model; dual output
□ two hidden layer model
⋄ minimum/maximum salary
◦ Dropped Feature Averaging of model15

Table 4: Model Comparison ofMAEshare DistributionAcross
SubOccs Here, 90% of the base model SubOccs’ MAEshare is less than
19% and for model15, 15%. Smaller is better.

MAEshare Percentile

Model 10th 25th 50th 75th 90th

base 8% 10% 15% 15% 19%
model15 9% 10% 11% 13% 15%

the records in D which are tagged as the given SubOcc. The mean
absolute error within a SubOcc is defined by

MAE =

∑
j ∈SubOcc |ŷj − yj |

m
,

where the number of records in a given SubOcc ism.We also let
the mean gold salary over Dj be ȳ. Then we have

MEAshare =
MAE

ȳ
.

The rationale for this metric is that MAE may scale differently for
different salary ranges. By defining the unitless metricMAEshare ,
we have a comparable way to measure deviation from the gold
salary across SubOccs and hence varying salary ranges.

Table 4 shows a comparison of the basemodel tomodel15 looking
atMEAshare over all SubOccs. We see, for example, that the 90th
percentile MAE share reduced from 19% to 15% between models.
This indicates that MAE is improved both at the global level and at

Table 5: Model Comparison of the Distribution of Absolute
Deviation Across SubOccs Here, 10% of the base model SubOccs’ ab-
solute deviations is less than 562 and for model15, 362. Smaller is better.

Percentile

Model 10th 25th 50th 75th 90th

base 562 1265 3546 7977 14893
model15 362 922 2760 6598 12974

the SubOcc level. So it does not appear that some SubOcc’s MAE
were adversely effected when comparing MAE in this manner.

6.2 Deviation Analysis
If model15 reduces variance and has better generalization relative
to the base model, then we should see a compression of deviations
from the gold salary between models. Table 5 looks at absolute devi-
ations of the predicted salary from the gold salary aggregated across
SubOccs. This is for a hand-selected set of 20 SubOccs determined
by Burning Glass domain experts for their representativeness of
the labor market to include low- and high-salary occupations and
for being qualitatively important to BGT clients. We can see that
for model15, the value at each percentile is lower in each case. So,
for example, in the least 10% of absolute deviations, the base model
has a maximum deviation of 562 and model15, 362. This is one
indication that aggregate data is does not adversely effect MAE
which needed to be tested to address Item (2) in the Introduction.

5

(a) Comparison of model15 to the base model outliers (b) Comparison of the base model to model15 outliers

Figure 1: Model comparison of outlier predictions
Here each circle represents the percent change from the gold salary to the predicted salary for a single job posting. In (a), this shows how model15 generalizes on
the base model’s extreme outliers. The x -axis is the percent change for the base model which shows the 10th and 90th quantile outliers. The y-axis is percent
change of the given posting for model15. Similarly, in (b), this shows how the base model generalizes on the model15’s extreme outliers. The x -axis is the percent
change for model15 and the y-axis is percent change from the gold salary for the base model. The regression line shows a line of best fit for the shown points. A
coefficient of zero would indicate a perfect model for the y-axis. So, a smaller coefficient is better.

If instead of looking at the 80% of the data that falls within the
10th and 90th percentiles, we look at the most extreme 20% of devia-
tions beyond these percentiles, then we can also see a compression
of these predictions toward the gold salary. Figure 1 shows the
percent change between the gold salary and the predicted salary.
For example, in Figure 1a an individual circle represents the percent
change from the gold salary for single job posting. The x-value of
the circle is the percent change from the gold salary of the base
model and the y-value is the percent change from the gold salary of
model15 for the same posting. The postings represented in 1a are
the 10th and 90th percentile most extreme outliers from the gold
salary for the base model. The gap along the x-axis represents the
postings which lie between the 10th and 90th percentiles. They-axis
shows howmodel15 behaves on the postings which deviated greatly
from the gold salary with the base model. So, Figure 1a shows the
generalization of model15 on the extreme predicted deviations from
the base model and Figure 1b shows the generalization of the base
model on the extreme predicted deviations from model15. If a circle
lies within the two acute angles of the red lines then this indicates
the predictions on the y-axis were no worse then the predictions
on the x-axis. Therefore, if the model predictions for the y-axis are
better then most of the points should fall within these two regions.
The dashed red line is a softer criteria of boundedness because the
absolute value of the percent change could still be less for the y-axis
predictions if it falls outside this boundary, when compared to the
x-axis value. The off-diagonal (orange) line is a linear regression
fit for these points. Because the points should be centered in the
acute regions, a coefficient closer to zero would indicate a model
which behaved more accurately on these postings. The coefficient
for the model comparison in Figure 1a is 0.70 and the coefficient
for the model comparison in Figure 1b is 0.79. This indicates that

model15 predictions generalized better in Figure 1a then how the
base model behaved on the outlier predictions of Figure 1b.

The histograms in Figure 1 shows the distribution of the points
along the x- and y-axes respectively. In Figure 1a we can see that
the distribution along the y-axis is clearly centered around zero.
This shows that model15 was able to generalize on greatest errors
of the base model. In Figure 1b the histogram along the y-axis is
more bi-modal then that in Figure 1a. This indicates that while the
base model was able to make more reasonable predictions on some
of the outlier prediction of model15, it was not able to generalize
as well to have a uni-modal distribution centered around zero of
Figure 1a.

6.3 Comparison to External Sources
Being reliant on a single source of data can be problematic if there is
extreme noise or consistent errors in the data. Having the ability to
validate your findings against an external data source brings its own
challenges, but it also provides an opportunity corroborate your
findings. The Occupational Employment Statistics (OES) [1] annu-
ally publishes salary data for government classified occupations
(SOC). The BGT occupational taxonomy is much more granular
than SOC coding. In the BGT occupational hierarchy, BGTOcc is
the most similar level of granularity to OES occupational codes.
Because of differences in occupational coding, salary comparison
is not completely precise. Table 6 shows the mean aggregates of
gold, predicted, and OES salaries. We see that the aggregate salaries
between gold and predicted salaries are similar. Comparison be-
tween predicted and OES are also reasonable. However, there are
some BGTOccs where the difference between predicted and OES
salaries are quite different. For example, see Police Chief / Sergeant
in Table 6. We have found two reasons for these discrepancies: 1) as

6

Table 6: Salary Comparison of BGTOcc Aggregates to OES

Mean Salary

BGTOcc Gold Predicted OES

Barista 23878 23912 19970
Business Intelligence Analyst 77310 77294 86805
Chief Information Officer 145384 142045 135624
Civil Engineer 78989 78459 83540
Computer Support Specialist 43236 43049 52025
Cyber Security Engineer 96662 95389 91960
Data Scientist 123331 121625 111840
Financial Analyst (General) 61593 63304 81665
General Manager 70255 71005 99310
Home Health Aide 29380 29378 22600
Nursing Home Administrator 77228 77142 96540
Police Chief / Sergeant 49973 51673 84840
Registered Nurse 68562 68649 68502

Figure 2: Mean Aggregate SubOcc Predictions by MSA
We see a general stratification of salary by MSA. For example, San Francisco, CA
generally has the highest salaries and Wichita, KS the lowest.

we have mentioned, there are differences in occupational mapping
and 2) we have found labeling issues in the gold dataset, which tend
to be specific to certain occupations. Each individual discrepancy
we have found has not been fully identified into which category it
belongs or if the discrepancy is due to both items.

6.4 Qualitative Analysis and Semantic
Learning

Avery important aspect of this salarymodel is that it should confirm
expectations in some reasonable way. This model is designed to
learn subtle, but important, distinctions in the data to derive a
semantic understanding of the individual features and is meant to
address Item (3) in the Introduction. A specific example here would
be location. The expectation is that a Civil Engineer would earn
more in Seattle, WA then they would in a smaller, less expensive
area such as Sandy Springs, GA. The location feature in the BGT
dataset is MSA, of which there are 388. Each MSA (as well as all
other features) embeds meaning. This semantic understanding of
features is used to adjust salary in a meaningful way.

Table 7: Title Suffix Perturbation

Title Pred. Salary Pct. Change

Software Engineer I 82417 -
Software Engineer II 92154 11%
Software Engineer III 98326 19%
Software Engineer IV 100076 21%

Table 8: Education and Experience Perturbation

Title Feature Pred. Salary Pct. Change

Legal Editor High School 41135 -
Legal Editor Associate 48748 18%
Legal Editor Bachelor 50072 21%
Legal Editor Masters 57169 38%
Legal Editor PhD 54046 31%

Data Scientist High School 87497 -
Data Scientist Associate 94464 7%
Data Scientist Bachelor 106992 22%
Data Scientist Masters 107729 23%
Data Scientist PhD 119983 37%

Quality Assurance Exp: 2 67042 -
Quality Assurance Exp: 4 71061 6%
Quality Assurance Exp: 6 74881 11%
Quality Assurance Exp: 8 76128 13%
Quality Assurance Exp: 10 82201 22%

Figure 2 shows a table of mean aggregate salaries by MSA for a
number of SubOcss from the hand-selected listed mentioned above.
The thing to notice here is that salaries for a given MSA tend to be
higher or lower across SubOccs. In other words, these predictions
are relatively higher in higher paid locations and lower in lower
paid locations. The model has learned that different location entities
should effect the salary in different ways, even on data that may
not have been observed during training.

For inputs into the model, title is the only free text field. Because
of this lack of structure for this field it has the potential to hold
valuable salary information. To test varying title information we
devised a set of simulated job postings where we hold all features
constant for a single test and perturb a single feature—in this case
title—to see how the salary varies under these conditions. Some of
these test were very subtle as shown in Table 7, where we change
the suffix of the title (a one or two character difference) to see
how the salary varies while changing the suffix to a title. We can
see there is an increase in salary between these different levels of
Software Engineer.

In addition to titles, we also looked at perturbing education and
experience while holding the rest of the features constant. Table 8
show two rôles as their education and experience change and all
other features remain constant. We see that for a Legal Editor with
a PhD (an unlikely scenario to begin with) the predicted salary
decreases slightly. This is a general phenomenon that this pattern
holds for higher-level titles, more experience, or more education.

7

This pattern holds for the gold salary in the training set as well. It is
currently unclear if this is due to a sparsity of training data at these
levels or if this is a true reflection of the labor market. We do see,
however, a general increase in salary as education and experience
increase.

7 DROPPED FEATURE ANALYSIS
Neural network models are generally not conducive to interpretabil-
ity. For this salary model, however, a way interpret the input fea-
tures was needed to indicate their relative importance measured
by their influence on the predicted salary. Here we introduce a
novel method to interpret input features and their impact on the
model output. This method is independent of the model itself and
the benefits described in this section are optionally performed at
prediction time.

Given a set of input features we can make a prediction with the
model. If we drop a single feature prior to input, we may also obtain
a prediction with the model. This prediction will be different, it may
be greater than or less than the original prediction. If the predicted
value is less than the base salary (all features are included) this
indicates that this feature is important to this input set. The reason
being is that if we insert this feature back into the feature set, then
it will increase the predicted value. Similarly, if a removed feature
increases the predicted salary, this feature has a negative influence.
This process, described for a single feature, can be performed se-
rially for the set of input features. We will now have a number of
predictions; these predictions may be averaged to obtain a final en-
sembled prediction. This method is Dropped Feature Analysis (DFA).
In Table 9 we see a base salary, the impact of each feature on the
prediction, including the tokenized title, and a final averaged value.
In Table 9 Delta defined by delta = base_salary − predicted_salary,
and Delta Norm is defined by delta_norm = delta/base_salary.We
can see here that location has the largest relative impact on the
salary. For the averaged salary this is a form of auto-ensembling
and is similar to [14] who uses a similar strategy for model testing.
Their proposed Leave-One-Out training strategy is not employed
here.

Most ensembling methods average predictions over a set of
models. This methodology allows us take advantage of a variance-
reducing ensemble without the overhead of utilizing multiple mod-
els. Using DFA predictions as an averaging ensemble is a variance-
reducing technique. As shown in Table 3, model15 had an MAE of
3844. Utilizing DFA on model15 gives an MAE of 3553 as seen in
Table 3, model 15a. This is an additional 7.5% reduction in MAE.
While this method is more computationally expensive at prediction
time, this provides a simple yet effective way of reducing additional
variance in the model. For a particular set of input features one
single feature may have a disproportionate impact on the predicted
salary. This may stem from the feature itself (e.g. a high-value skill)
or an anomalous result due to data sparsity. By averaging this en-
semble, we constrain the impact of features with a large influence
on the predicted salary.

Dropped Feature Analysis also allows us to have insight into the
relative importance of a single input feature. As Breiman indicates
in [15], feature importance (variable importance) methods provide
insight at the global level and they indicate which features have

Table 9: Dropped Feature Analysis: Enterprise Software En-
gineer Because title is tokenized the title features of this Dropped Feature
Analysis are prefixed below with "title:" for clarity. Here Delta is the dif-
ference of the predicted salary from the base salary. Delta Norm is the
normalized Delta relative to the base salary.

Dropped Feature Delta Delta Norm

base 97441 -

San Francisco-Oakland, CA 14295 15%
Experience: 5 yr. 9817 10%
title: Engineer 7331 8%
Ajax 7209 7%
Building Effective Relationships 4957 5%
Apache Subversion 4846 5%
Extensible Markup Language 4220 4%
Communication Skills 3078 3%
title: Enterprise 1954 2%
Enterprise Java Beans 1215 1%
title: Software -565 -1%
Eclipse -1367 -1%
Hardware/Software Installation -3548 -4%
Customer Service -3891 -4%

averaged salary 94137 -

the highest predictive value. DFA on the other hand operates at
the record level. This provides a micro instead of a macro view of
the importance its individual features. We would like to assess the
importance of the input features, rather than assess the importance
of the numeric input parameters. This would not be possible with
variable importance because of the data pre-processing; hashing
of the features obscures the identity of numeric input parameters.
Variable importance is used to find features with the highest pre-
dictive value. DFA discerns feature importance through dropping
individual features and finding a feature’s relative impact when
compared to the base salary. Further, this ensemble is used to im-
prove predictive performance. To recapitulate, DFA has a number of
facets of interest when compared to Breiman’s variable importance:
• a single model is used instead of a forest of models,
• feature importance is detailed at the record level instead of
a global level,
• instead of discerning feature importance by its predictive
performance, DFA improves predictive performance,
• DFA is a variance-reducing ensemble method, and
• it is possible to assess the importance of raw text features as
opposed to just the numeric model input parameters. This
would not be possible with Breiman’s method due to data
pre-processing.

8 CONCLUSION AND FUTUREWORK
In this paper we looked at the Burning Glass data and taxonomy and
how this data is transformed for use in a deep neural networkmodel.
This feature space to parameter space transformation utilizes input
feature hashing to reduce the dimensionality of the network input
and parameter weights use a modified TF-IDF weighting (TF-ICF)

8

relative to an individual posting’s OccGroup. The TF-ICF weighting
for the base model reduced MAE model error by 8%. The final se-
lected model, model15, reduced the MAE another 9% to 3844, when
compared to the base model. Leveraging the proposed Dropped Fea-
ture Averaging, we reduced the MAE to 3553, a 16% reduction from
the base model. It is not an exact comparison because of the differ-
ence in the features of the models, but when comparing the MAE of
the Adzuna competition mentioned in the introduction the winning
MAE was 5403 (adjusted to USD) while the best performing BGT
salary model obtained an MAE of 3553. Here we leveraged DFA as a
variance-reducing ensemble method and we also pursued how this
method may provide insight into record-level feature importance.

In addition to looking at MAE for model selection and variance
reduction, we also looked at the qualitative aspects of this model
and its learning of semantic structure. Model input can be very
nuanced and these small changes in input can set up expectations
for how the model should behave. We saw this, e.g. in title suffix
changes to indicate different levels of a rôle.

After production deployment of this model, we will populate
existing postings with predicted salaries. There will also be a salary
API which will handle real-time, ad-hoc salary requests. These
requests will be logged so that we may evaluate the performance
of the model in production relative to aggregate statistics of the
gold salary data. Additionally, we will work closely with clients
to obtain first-hand knowledge of their experience and interaction
with the product.

To continue future research, we want to look at DFA and its abil-
ity to generalize to classification tasks. This method is agnostic to
model type in this regard, as long as the output of the classification
is a probability distribution. So this could be used for ensemble
averaging as well as feature importance based on percent change
from the base class probability. We also want to further investigate
additional external data sources to corroborate our data findings. In
particular, we could investigate the salary changes based on location
and how these deviations compare to cost of living ratios between
cities. Lastly, based on discrepancies found in our comparison with
OES data, we want to further investigate if large deviations from
OES salary data indicates a misalignment with the OES occupation
to BGTOcc mapping or if BGT salary tagging is the source these
deviations. Similarly, we want understand the depression of salary
we see for postings with many years of required experience or high
educational requirements, to see if this is related to training data
sparsity, data tagging, or if it is a true reflection of the labor market.

ACKNOWLEDGMENTS
We would like to that all of those involved in the development
of this model and for determining and understanding all of the
possible applications of this model. In particular, we would like to
thank Dan Restuccia and Christopher Dedels for their invaluable
insight and understanding of the complexities of this modeling task.
We would also like to thank the BGT Applied Research team for
their contributions and wholistic view of this process.

REFERENCES
[1] U.S. Department of Labor Bureau of Labor Statistics. 2017. Occupational Employ-

ment Statistics. (2017). http://www.bls.gov/oes/

[2] LLC. CareerBuilder. 2016. How to Rethink the Candidate Experience and Make
Better Hires. CareerBuilder’s Candidate Behavior Study (2016).

[3] François Chollet et al. 2015. Keras. https://github.com/keras-team/keras. (2015).
[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
http://arxiv.org/abs/1512.03385

[5] Kaggle Inc. 2013. Job Salary Prediction | Kaggle. (2013). https://www.kaggle.
com/c/job-salary-prediction

[6] Stack Exchange Inc. 2017. 2017 Average Software Developer Salary - Stack
Overflow. (2017). https://stackoverflow.com/jobs/salary

[7] XE.com Inc. 2018. XE: GBP / USD Currency Chart. British Pound to US Dollar
Rates. (2018). http://www.xe.com/currencycharts/?from=GBP&to=USD&view=
10Y

[8] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. CoRR abs/1502.03167
(2015). arXiv:1502.03167 http://arxiv.org/abs/1502.03167

[9] Krishnaram Kenthapadi, Ahsan Chudhary, and Stuart Ambler. 2017. LinkedIn
Salary: A System for Secure Collection and Presentation of Structured Compen-
sation Insights to Job Seekers. CoRR abs/1705.06976 (2017). arXiv:1705.06976
http://arxiv.org/abs/1705.06976

[10] John Langford. 2007. Vowpal Wabbit Code Release. (2007). http://hunch.net/?p=
309

[11] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,
and Jeremy Kubica. 2013. Ad Click Prediction: a View from the Trenches. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

[12] Tom Mitchell. 1997. Machine Learning (1st. ed.). University of Chicago Press,
Chicago. https://doi.org/10.1007/3-540-09237-4

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[14] R. Sabourin, P. R. Cavalin, A. de Souza Britto, and A. H. Ko. 2008. Leave-One-Out-
Training and Leave-One-Out-Testing Hidden Markov Models for a Handwritten
Numeral Recognizer: The Implications of a Single Classifier and Multiple Clas-
sifications. IEEE Transactions on Pattern Analysis & Machine Intelligence 31 (10
2008), 2168–2178. https://doi.org/10.1109/TPAMI.2008.254

[15] Leo Breiman Statistics and Leo Breiman. 2001. Random Forests. In Machine
Learning. 5–32.

[16] Deqing Wang, Hui Zhang, Wenjun Wu, and Mengxiang Lin. 2010. Inverse Cate-
gory Frequency based supervised term weighting scheme for text categorization.
CoRR abs/1012.2609 (2010). arXiv:1012.2609 http://arxiv.org/abs/1012.2609

9

http://www.bls.gov/oes/
https://github.com/keras-team/keras
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://www.kaggle.com/c/job-salary-prediction
https://www.kaggle.com/c/job-salary-prediction
https://stackoverflow.com/jobs/salary
http://www.xe.com/currencycharts/?from=GBP&to=USD&view=10Y
http://www.xe.com/currencycharts/?from=GBP&to=USD&view=10Y
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1705.06976
http://arxiv.org/abs/1705.06976
http://hunch.net/?p=309
http://hunch.net/?p=309
https://doi.org/10.1007/3-540-09237-4
https://doi.org/10.1109/TPAMI.2008.254
http://arxiv.org/abs/1012.2609
http://arxiv.org/abs/1012.2609

	Abstract
	1 Introduction
	2 Related work
	3 Data
	4 Feature Extraction
	5 Deep Neural Network Model
	5.1 Baseline Model and Model Selection

	6 Results and Evaluation
	6.1 Normalized MAE
	6.2 Deviation Analysis
	6.3 Comparison to External Sources
	6.4 Qualitative Analysis and Semantic Learning

	7 Dropped Feature Analysis
	8 Conclusion and Future Work
	Acknowledgments
	References

