THH \& the desciption of THH (F_{p}) \rightarrow due to Bökstedt (unpublished), also dove by Breen pwely algebraically \rightarrow Still it seems that THH (FF) as a ving, one veeds some boy ological inpert, arg. Steewrod operations.
See Franjon-Lames-Scharartz.
For a veference, Blunvaug-Cohem-Schictkrall \rightarrow compute THH (FP) using H_{p} as a Thom spectrom

See also notes by Krase-Nikolars for a discussion. (on THH).

Topologial yatic homolory appeared in Bölestedt-Hsiang.Madiery $K(\beta) \rightarrow J C(R)$

Theovens of Dundas-Goodwillic-McCarthy if R a viry, $I \subseteq R$ nilpotent, have a cantesion s grane

$$
\begin{gathered}
K(R) \rightarrow T C(R) \\
\downarrow \\
K(R / t) \rightarrow T C(R / I)
\end{gathered}
$$

Apptications by Hesselholt, Madsen to compute K-theory of lots of ring δ.
\rightarrow See Madsen's sumey "Algebraic K-theorg \&traces"

$$
T C(R)=\operatorname{Hom}_{C_{y c} S_{p}}(1) \text { Cyclotomic spect:a } \operatorname{THH}^{(P))}
$$

Initially one didurt have $C_{y c} S_{p}$ as a homotopy theory. (insteal TC defined more explicitte).
Mantioned by Kaledin, 2010 .

Thoeshreanatapy thery Cyc Sp was consturcted by Blumbarg - Mandell \& fommule abore is carect.

Also descibsed by Bamide-Glasnany Ayala - Mayd-Ceee - Rozanblym

Nicolcus-Sccholze: all descriptions of cyclotomic spectra hare velundamay in bounded-below case.
They give a lesuption of cyclozomic spectra,

$$
\begin{gathered}
\text { spection, } \\
= \\
S^{\prime} / G_{p}
\end{gathered}
$$

The description of $\operatorname{THH}(R), R$ a coming \sim frow thee para.

Antican-Nikolars: Give a description of cyclotamic spectra in tames of the muaniant $T R \longrightarrow$ "topological Cartier modules"

Main the rem (Bhatt-Momow - Scholze).
R smooth alyetion / perfect fill k
Than there is a filtration on the

$$
T P(R)=T H H(R)^{t S^{\prime}} \text { whose }
$$ associated graded is

(2-peridic) cysitallive colomlogy of R.
Ex

$$
\begin{aligned}
& R=\mathbb{F}_{p} \\
& T H H\left(\mathbb{F}_{p}\right)_{*}=\mathbb{F}_{p}[\theta],|\sigma|=2 . \\
& T P\left(\mathbb{F}_{p}\right)_{\theta}=\mathbb{Z}_{p}\left[x^{*}\right],|x|=-2 .
\end{aligned}
$$

coystallie coh of \mathbb{F}_{p} is \mathbb{Z}_{p}.
Rma R any F_{p}-alyetion $T P(R)$ is a moonle ore $T P\left(\mathbb{H}_{P}\right)$

$$
T P(R)_{Z_{P}}^{L} \mathbb{F}_{p} \simeq H P\left(R / F_{P}\right)
$$

Constructing this filtration is some what subtle (Antiom-Nikolars gave a simpler coustuction), BMS really wart to input mixed charrigs (cig. \mathbb{Z}_{y}).
How to constunct filtration on TP (Ω) ?

1) Dave all functors so car apply to large H_{p}-alg. (derive differvantial forms, $d R$ cols).
2) Construct the filtration directly for large \#p-aly ("regular $\begin{gathered}\text { seniperfect") }\end{gathered}$ (Postrikar filtration).

Ip is here in evan degrees.
3) Define on smooth \mathbb{F}_{p}-alas lay faithfully flat descant.
Derived functors ("nowabelian").
ex k field
Sym $^{i}: \operatorname{Vect}_{k} \rightarrow$ Vect $_{k}$.
Admits a derived functor

$$
\begin{aligned}
& \text { Admits a derived functor } \\
& H \text { Sym: } D(k)_{\geqslant 0} \longrightarrow D(k) \geqslant 0
\end{aligned}
$$

Explicitly $P_{1} \rightarrow$ Dold-Kan into a simplicial k-vector pure pi
\rightarrow Consider Sym ${ }^{i} p^{\prime}$, as a new simplicial
k-vector spare \leadsto apply $D K$ to a chain $c x$. This is Sym ${ }^{\text {i }}$.

Ex) (Quillen cotangent complex). Ka base field.
Each comm k all $R_{j} \leadsto \Omega_{R / k}^{1}$
kähler differebts.
The "derived functor" is the cotangent complex $L_{R / K}$.

Corstumaction: R a ring, choose a simplicial k-aby $P_{1} \quad \omega /$ $l . \rightarrow R$ q-iso.

Thar $L_{p / k}=\left|\Omega_{p, / k}^{1}\right|$ granitic realization.

More gervally R can be a $\operatorname{SC} R$.
Key property:

$$
H_{0}\left(L_{R / k}\right)=S_{R / k}^{\prime}
$$

Com te higher tromology \sim does not happen if α / k smooth.

Consider SCR \rightarrow homotopy theory of sompliusl

$$
P_{o l \gamma_{k}}^{f \cdot g} \subseteq S C R_{k}
$$

Fact: If e is any w-category w sifted colimits,

$$
\begin{aligned}
& \operatorname{Fim}\left(\text { Polyg }_{k}^{\text {f.g' }}, e\right) \simeq \operatorname{Fin}_{\lambda}^{\prime}\left(S^{\prime}\left(R_{k}, e\right)\right. \\
& \text { comente of } \\
& \text { siffed colinuts. }
\end{aligned}
$$

$E x) e=D(k)$.
$F: \Omega_{k}^{\prime}$ on poly hawind
(Analog of this for dearet symutics exterior \rightarrow mivarasal propertly for deriect categans).

In general, it's hand to make this explicit on vies (which are not poryminal).

Ex) Quillon cotangat $c x$

$$
L_{R / k} \simeq S_{R / k}^{\prime}
$$

if R smooth.
Another example: derived de Shan cohan ology.
Recall (k a base fill)

$$
\alpha / k \text { alg }(\operatorname{smooth}) \text {, }
$$

Consider $\left(\Omega_{R \mid K}^{A}, d\right) \leadsto$ comintatue

$$
\begin{aligned}
& \begin{array}{l}
\text { Smooth } \\
\text { alg } / k
\end{array} \varepsilon_{\infty}-a l k \text { arer } \\
& h \longmapsto\left(\Omega_{\beta / k)}^{*} d\right) .
\end{aligned}
$$

Cet's try to deare this constuction (Illusie).
Restrict polynanial nings, \& then vesolv. (simpliail) wings by polynmial vings.

$$
d R_{k}: S h_{k} \longrightarrow \varepsilon_{\substack{\text { oru } \\ \text { ork }}}
$$

"derived de Rhan columology"
Ex) If R is a pdry ving, it's usmel de Rhan compllex \rightarrow in germal based on some vesolution.

Theorm (Bhatt): k perfect, chen.p.

$$
\begin{aligned}
& \text { heomen (Bhatt): } k \text { perteal) if } \\
& d R_{R / k} \simeq\left(\Omega_{R / k)} d\right) \text { if }
\end{aligned}
$$

R swooth. (Cartior iscourphion. (anjughte filtration).

Not twe in chaw. O!

Also a theong of daved argst a lline cahoudayy, agrees of ord. crystalline cols on swooth algs (kalo).

Prop k base fiell, R / k aly. Claim is that $H H(R / k)$ has a (comageit) Lercendig fuctration whose gri

$$
\left.\cong\left(\Lambda_{R}^{i} L_{R / K}\right)^{i}\right]
$$

$$
\uparrow
$$

- corsider $L_{R / k}$ is in $D(R)$
- Λ^{i} is (abicth) extecior in R-mosonles.

Pf: Consider

$$
H H(/ k): S\left(R_{k} \rightarrow D(k)\right. \text {. }
$$

Obseme that this comutes u/sifted colinits.
Evaything is detenned by polynamial vings.
In fact, $H H(/ k)$ is completely by value on polynomial vings.
If P is a plynamial ving)
HKR theman: $H_{H}(\rho / k) \simeq \Omega_{p / k}^{*}$. (tume for survith algetras).

Take the postuiker filtration

$$
\begin{aligned}
& F^{i} \operatorname{HH}(l / k)=\tau_{z i} \operatorname{HH}(l / k) \\
& g r^{i}=\left(\Lambda^{i} \Omega_{p / k}\right)[i] .
\end{aligned}
$$

Proved prop if l is polynomial, now extend fomely (Kan extension) to get the statement in geraval. I.

For this te useful, reed rings for which $L_{R / K}$ known.

Prop: k perfect, char-p.
$R /_{k}$ is a perfect ring
meaning Frobmins: $R \rightarrow R$ is an iso.
Then $L_{R / k}=0$.
Ex $\mathbb{F}_{p}\left[x^{1 / p^{\infty}}\right]$ is a perfect
16en: in $\operatorname{leg} 0, \operatorname{sic}(k)$

$$
\begin{aligned}
& d x=0 \quad x \in R \quad \quad x=y^{P} \\
& 2 x=d\left(y^{P}\right)=p y^{\prime-1} d y=0 \text { incha.p. }
\end{aligned}
$$

Cor: R/k perfect ing,

$$
H H(R / K)_{*}=Q_{\cdot}(\operatorname{in} \operatorname{deg} 0)_{-}
$$

Pf: Use $H K R$ filtration from previous prop.j $L_{R / k}=0 . B$.

Cor $\operatorname{THH}(R)_{*}=R[\sigma]$.
R perfect
Describe THH(F, TS $_{*} \simeq \frac{\mathbb{Z}_{p}[x, \theta]}{x \theta=p}$

$$
\begin{aligned}
& |\theta|=2 \\
& |x|=-2 \quad\left(x \in H^{2}\left(\mid p^{p}\right)\right)
\end{aligned}
$$

Nikolans-Scholze $\rightarrow \mathrm{THH}\left(\mathrm{FH}_{\mathrm{F}}\right)$ as a cyclotonic spectrony,

$$
\begin{gathered}
T H H\left(T_{D}\right) \approx \tau_{\geqslant 0}\left(\mathbb{Z}_{p}^{t C_{P}}\right) \\
\text { as } \varepsilon_{\infty}-\text { ing }
\end{gathered}
$$

