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Overview

Theorem (Hopkins-Mahowald-Sadofsky)
The exotic K(h)-local Picard group κh = 0 at primes p such that
(p − 1) ∤ h and 2p − 1 > h2.

In this joint work in progress with Dominic Culver, we study κh at prime p
such that 2p − 1 = h2.

Observation
The assumption 2p − 1 = h2 implies (p − 1) ∤ h.
Unknown if there are infinitely many such pairs of primes and heights.
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Main results

Theorem (Culver-Z.)
Suppose the prime p and the height h satisfy 2p − 1 = h2.
1 When the Smith-Toda complex V (h − 2) exists, elements X in κh

cannot be detected by V (h − 2), i.e.
X ⊗K(h) V (h − 2) ≃ LK(h)V (h − 2). (e.g. (h, p) = (3,5), (5,13))

2 If the Reduced Homological Vanishing Conjecture holds at p = 5 and
h = 3, then κ3 = 0 at p = 5.

3 There are bounds on the divisibility of Greek letter elements that would
imply both RHVC and κh = 0 when 2p − 1 = h2.

Conjecture (Reduced Homological Vanishing Conjecture)

Fp ≃H0(Gh;Fph)
∼Ð→H0(Gh;π0(Eh)/p)
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Strategy

1 GHMR defined a map τ ∶ κh →H2p−1
c (Gh;π2p−2(Eh)), which is

injective when 2p − 1 = h2.
2 Show that Hh2

c (Gh;M) ≃Hh2

c (Gh;M/p) for M = π2p−2(Eh).
3 Use Poincaré duality to relate Hh2

c to both H0 and H0
c :

Hh2

c (Sh;M) ≃H0(Sh;M) Hh2

c (Sh;M) ≃H0
c (Sh;M∨)∨

4 The Gross-Hopkins duality identifies the equivariant Pontryagin dual for
πt(Eh) as an Sh-Eh-module. This dual involves Eh⟨det⟩.

5 Identify Eh⟨det⟩/p as a limit of finite suspensions.
6 Use the change of rings theorem to translate to BP computations.
7 Greek letter computations.
8 Use the same method to study RHVC and compare.
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K(h)-local Picard groups

K(h)-local Picard groups
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K(h)-local Picard groups

The K(h)-local Picard group

Definition
Denote by PicK(h) the Picard group of the symmetric monoidal category
(SpK(h),⊗K(h),1K(h)) where

X ⊗K(h) Y ∶= LK(h)(X ∧ Y ),1K(h) ∶= S0
K(h).

Theorem (Hopkins-Mahowald-Sadofsky)
The followings are equivalent:

X ∈ PicK(h).
(Eh)∗X is a graded invertible (Eh)∗-module.

From there, we get the zeroth detection map:

ev0 ∶ PicK(h) Pic(graded (Eh)∗-modules) ≃ Z/2

X (Eh)∗(X)
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K(h)-local Picard groups

The algebraic K(h)-local Picard group
Let Pic0K(h) = {X ∈ PicK(h) ∣ (Eh)∗X ≃ (Eh)∗} = ker ev0. For any
X ∈ Pic0K(h), (Eh)0(X) comes with a Gh-action. This induces the first
detection map:

ev1 ∶ Pic0K(h) Pic(Gh-(Eh)0-modules) ∶= Picalg,0
K(h)

X (Eh)0(X)

Theorem (Hopkins-Mahowald-Sadofsky)

Picalg,0
K(h) ≃H

1
c (Gh;π0(Eh)×).

Example

When h = 1, Picalg,0
K(1) ≃ Endc(Z

×
p) ≃ {

Z/2⊕Z/2⊕Z2 p = 2;
Z/(p − 1)⊕Zp p > 2.
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K(h)-local Picard groups

The exotic K(h)-local Picard group

Definition
κh ∶= ker ev1 is called the exotic K(h)-local Picard group.

Homotopy groups of X ∈ SpK(h) are computed by the HFPSS:

Es,t
2 (X) =H

s
c (Gh; (Eh)t(X)) =Hs

c (Sh; (Eh)t(X))Gal Ô⇒ πt−s(X)

The E2-page of the HFPSS for X ∈ κh is the same as that for S0
K(h).

Their differences lie in the higher differentials.

Theorem (Hopkins-Mahowald-Sadofsky)
κh = 0 when (p − 1) ∤ h and 2p − 1 > h2.

Question
Is κh = 0 when 2p − 1 = h2?
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K(h)-local Picard groups

Proof of the Theorem

Let X ∈ κh be an exotic element. The proof consists of four steps:
1 (0-th line) E0,0

2 (X) = Zp and E0,t
2 (X) = 0 when t ≠ 0.

2 (Sparseness) Es,t
2 (X) = 0 unless 2(p − 1) ∣ t. This implies the first

possible non-trivial differential is dX2p−1 ∶ E
0,0
2 (X)→ E2p−1,2p−2

2 (X).
3 (Horizontal vanishing line) When (p − 1) ∤ h, cdp(Sh) = h2. This

implies Es,t
2 (X) = 0 when s > h2.

4 The above implies that there is no room for higher differentials in the
HFPSS for X when (p − 1) ∤ h and 2p − 1 > h2. As a result, any
generator [η] ∈ E0,0

2 (X) = Zp is a permanent cycle, which converges to
some element η ∈ π0(X). One check that η factorizes as

η ∶ S0
LK(h)ÐÐÐ→ S0

K(h)
∼Ð→X
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K(h)-local Picard groups

Algebraic detection of κh

GHMR used d2p−1 to define an algebraic detection map for κh:

ev2 ∶ κh Ð→H2p−1
c (Gh;π2p−2(Eh))

Construction (Goerss-Henn-Mahowald-Rezk)

Fix an Gh-equivariant isomorphism fX ∶ (Eh)∗
∼Ð→ (Eh)∗(X) and define

ϕX via the following commutative diagram:

H0
c (Gh;π0(Eh)) H2p−1

c (Gh;π2p−2(Eh))

H0
c (Gh; (Eh)0(X)) H2p−1

c (Gh; (Eh)2p−2(X))

ϕX

(fX)∗ ≃ (fX)∗≃
dX2p−1

Set ev2(X) ∶= ϕX(1). Then ev2 is a well-defined group homomorphism.
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K(h)-local Picard groups

An exhaustive filtration on κh

By considering higher and higher differentials in HFPSS, we get an
exhaustive filtration on κh, where κ

(m)
h = ker evm+1.

⋯ ⋯

κ
(m)
h E

2(m+1)(p−1)+1,2(m+1)(p−1)
2m(p−1)+2

⋯ ⋯

κ
(1)
h E4p−3,4p−4

2p

κh E2p−1,2p−2
2 =H2p−1

c (Gh;π2p−2(Eh))

⊆

evm+2

⊆
⊆

ev3

⊆

ev2

Corollary
ev2 is injective when (p − 1) ∤ h and 4p − 3 > h2. As a result,
H2p−1

c (Gh;π2p−2(Eh)) = 0 implies κh = 0 under the same assumption.
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K(h)-local Picard groups

The Chromatic Vanishing Conjecture

Conjecture (Hopkins)
The inclusion ι ∶WFph ↪ π0(Eh) of Gh-modules induces an isomorphism
on group (co)homology in all heights, primes, and degrees:

ι∗ ∶Hs
c (Gh;WFph)

∼Ð→Hs
c (Gh;π0(Eh))

ι∗ ∶Hs(Gh;WFph)
∼Ð→Hs(Gh;π0(Eh))

The cohomological version of the conjecture has been proved in the
following cases:

s = 0 for all h and p.
h ≤ 2 for all p and s. (SY95, Beh12, Koh13, GHM14, BGH17, BDM+18, ...)

Conjecture (Reduced Homological Vanishing Conjecture)

Fp ≃H0(Gh;Fph)
∼Ð→H0(Gh;π0(Eh)/p)
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K(h)-local Picard groups

PicK(h) for h = 1,2

(HMS) When h = 1, PicK(1) = {
Z2 ×Z/4 ×Z/2 p = 2;
Zp ×Z/2(p − 1) p > 2.

ev1 ∶ Pic0K(1) → Picalg,0
K(1) is surjective.

HMS’s Theorem implies κ1 = 0 when p > 2.
When p = 2, ev2 ∶ κ1

∼Ð→H3
c (G1;π2(E1)) = Z/2.

When h = 2 and p ≥ 3, PicK(2) = {
Z2
3 ×Z/16 ×Z/3 ×Z/3 p = 3;
Z2
p ×Z/2(p2 − 1) p ≥ 5.

ev2 ∶ Pic0K(2) → Picalg,0
K(2) is surjective.

(Hopkins) When p ≥ 5, Picalg,0
K(2) = Z

2
p ×Z/(p2 − 1). This computation uses

the Vanishing Conjecture at s = 1.
(Karamanov) The above formula holds at p = 3.
HMS’s Theorem implies κ2 = 0 when p ≥ 5.
(GHMR) When p = 3, ev2 ∶ κ2

∼Ð→H5
c (G2;π4(E2)) = Z/3 ×Z/3.
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Duality

Duality
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Duality

Bounded torsion
Proposition
Let M = π2p−2(Eh). Then Hh2

c (Gh;M) ≃Hh2

c (Gh;M/p) if (p − 1) ∤ h.

Proof.
From the SES of Gh-presentations

0 M M M/p 0
−⋅p

,

we get a LES of group cohomology of Gh. By considering the action of
the center Z×p ⊴ Sh on M , we get a Lyndon-Hochschild-Serre SS:

Er,s
2 =H

r
c (Gh/Z×p ;Hs

c (Z×p ;M))Ô⇒Hr+s
c (Gh;M).

This SS implies H∗c (Gh;M) is p-torsion. Now from the LES in group
cohomology, we conclude Hh2

c (Gh;M) ≃Hh2

c (Gh;M/p), since
h2 = cdp(Sh) when (p − 1) ∤ h.
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Duality

Poincaré duality
Goal
Compute Hh2

c (Sh;πt(Eh)/p)Gal when (p − 1) ∤ h and t = 0 or 2p − 2.

A direct computation of Hh2

c when h ≥ 3 seems to be out of reach.
Instead, we use Poincaré duality to relate this computation to H0 and H0

c .
Theorem (Lazard, Symonds-Weigel)
Sh is a p-adic Poincaré duality group of dimension h2.More precisely, let
M be a p-complete Sh-representation. Then we have

Hs
c (Sh;M) ≃Hh2−s(Sh;M) Hs

c (Sh;M) ≃Hh2−s
c (Sh;M∨)∨,

where (−)∨ ∶= Hom(−,Qp/Zp) is the p-adic Pontryagin dual.

Corollary
RHVC is equivalent to the mod-p CVC at s = h2 when (p − 1) ∤ h.
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Duality

Gross-Hopkins duality

We will use the second form of Poincaré duality, and relate it to the Greek
letter computations. To do so, we must identity the Sh-equivariant
Pontryagin dual M∨ for M = πt(Eh)/p.

Theorem (Gross-Hopkins)
Let m = (p, u1,⋯, uh−1) ⊴ π0(Eh) be the maximal ideal, then

πt(Eh)∨ ≃ π2h−tEh⟨det⟩/m∞,

where ⟨det⟩ denotes the determinant twist of the stabilizer group action.
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Duality

The determinant twist mod p

So far, we have showed:
Hh2

c (Sh;πt(Eh)/p) ≃H0
c (Sh;π2h−t(Eh)⟨det⟩/(p) +m∞)∨.

The next step is to identify the determinant twist mod p.
Theorem (Gross-Hopkins)
There is an isomorphism of Gh-modules:

π∗(Eh)⟨det⟩/p ≃ π∗
⎛
⎝
Σ

lim
N→∞

pN ∣vh ∣
p−1 Eh

⎞
⎠
/p.

More precisely, let J ⊴ π0(Eh) be an open invariant ideal containing p,
such that (Eh)∗/J has a vp

N

h -self map, then

πt(Eh)⟨det⟩/J ≃ πt (Σ
pN ∣vh ∣
p−1 Eh)/J = π

t− pN ∣vh ∣
p−1
(Eh)/J.
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Duality

Fixed points of the quotient mod (p) +m∞

Let M be a Gh-π0(Eh)-module. Recall M/(p) +m∞ ∶= colim
p∈J⊴Eh

M/J ,
where J ranges over all open invariant ideals of Eh containing p. Notice
this colimit is filtered and Sh is topologically finitely generated. This
implies the canonical map

colim
p∈J⊴Eh

H0
c (Sh;M/J)

∼Ð→H0
c (Sh;M/(p) +m∞)

is an isomorphism. Consequently, we have established in this section:

Hh2

c (Gh;πt(Eh)/p) ≃ colim
p∈J⊴Eh

H0
c (Sh;π

2h−t− pN(J)∣vh ∣
p−1

(Eh)/J)
Gal

,

where N(J) is the smallest N so that vp
N

h is invariant mod J . To prove
LHS is 0 (Fp) when t = 2p − 2 (t = 0), we want to show that every single
term in the colimit on RHS is zero (Fp).
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Greek letter elements

Greek letter elements
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Greek letter elements

The Change of Rings Theorem

Let M be a BP∗BP -comodule. Denote Exts,tBP∗BP (BP∗,M) by Hs,t(M).

Theorem (Change of Rings)
Let Ih = (p, v1, v2,⋯, vh−1) ⊴ BP∗ be an invariant prime ideal and
m ⊴ π0(Eh) be the maximal ideal. Then there is an isomorphism:

Hs
c (Gh;πt(Eh)/m∞) ≃Hs,t(v−1h BP∗/I∞h )

Let J be an invariant ideal of BP∗ such that p ∈ J ⊆ Ih and that N is the
smallest number so that vp

N

h is invariant mod J . Using the Change of
Rings Theorem, we can translate our computational goals to:

H
0,2h−t− pN ∣vh ∣

p−1 (v−1h BP∗/J) = {
Fp, t = 0;
0, t = 2p − 2 holds for all such J.
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Greek letter elements

Greek letter elements mod Ih−1

Let Mk
h−k = v

−1
h BP∗/(p, v1,⋯, vk−1, v∞k ,⋯, v∞h−1).

Theorem (Miller-Ravenel-Wilson)
H0,∗(M1

h−1) is additively generated by the following elements:
I. vsh

pv1⋯vh−2vh−1 , where (p, s) = 1.
II. 1

pv1⋯vh−2vjh−1
, where j ≥ 1.

III. xs
h,N

pv1⋯vh−2vjh−1
, where N ≥ 1, xh,N is some replacement of vp

N

h , (p, s) = 1,
and 1 ≤ j ≤ ah,N for some ah,N defined by a recursive formula.

For any open invariant ideal Ih−1 ⊆ J ⊆ Ih, H0,∗(v−1h BP∗/J) is then
generated by the elements above that satisfy J ⊆ (p, v1,⋯, vh−2, vjh−1).

Culver-Zhang (MPIM and UPenn ) κh when 2p − 1 = h2 eCHT Seminar 23 / 30



Greek letter elements

Hh2

c mod (p, u1,⋯, uh−2)

Lemma
α ∈H0,∗(M1

h−1) corresponds some element in
Hh2(Gh;πt(Eh)/(p, u1,⋯, uh−2)) iff

∣α∣ ≡ 2h − t − pN ∣vh∣
p − 1

mod pN ∣vh∣

Corollary
Let t ∈ Z. Hh2

c (Gh, πt(Eh)/(p, u1,⋯, uh−2)) is zero unless:
(Family I) ∣vh∣ divides t.
(Family III) t = spN ∣vh∣ − (p

N−1)∣vh∣
p−1 + (j − 1)∣vh−1∣, for some N ≥ 1 and

1 ≤ j ≤ ah,N .

When h = 2, p ≥ 5, we recover Behrens’ computation of H4
c (G2;πt(E2)/p).
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Greek letter elements
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Greek letter elements

Implications of the MRW computations
When (p − 1) ∤ h, the above computation yields:

Corollary
H0(Gh;π0(Eh)/Ih−1) =Hh2

c (Gh;π0(Eh)/Ih−1) = Fp.
H0(Gh;π2p−2(Eh)/Ih−1) =Hh2

c (Gh;π2p−2(Eh)/Ih−1) = 0.

When 2p − 1 = h2, the latter measures whether the exotic elements in κh
are detected by the Smith-Toda complex V (h − 2) ∶= S0/(p, v1,⋯, vh−2).
From this we conclude
Theorem (Culver-Z.)
Suppose the Smith-Toda complex V (h − 2) exists and 2p − 1 = h2. Then

X ⊗K(h) V (h − 2) ≃ LK(h)V (h − 2), for any X ∈ κh.

In particular, this is true when (h, p) = (3,5) and (5,13).
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Greek letter elements

Greek letter elements mod p

Proposition
As an Fp-vector space, H0,∗(Mh−1

1 ) is generated by elements in the
following families:
I. vsh

pv1⋯vh−1 , where (s, p) = 1.

II. 1

pv
d1
1 ⋯v

dh−1
h−1

, where (p, vd11 ,⋯, vdh−1h−1 ) is an invariant ideal.

III. ysN,h

pv
d1
1 ⋯v

dh−1
h−1

, where yN,h is some replacement of vp
N

h , (s, p) = 1 and

(p, vd11 ,⋯, vdh−1h−1 , ysN,h) is an “admissible” sequence.

By analyzing the degrees of elements in Families I and II, we get
Family I contributes a copy of Fp to Hh2

c (Gh;πt(Eh)/p) when ∣vh∣ ∣ t.
Family II does not contribute to Hh2

c (Gh;πt(Eh)/p) when t ∈ Z.
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Greek letter elements

Bounds on divisibility
It now remains to study Family III. The precise condition for
(p, vd11 ,⋯, vdh−1h−1 , ysN,h) to be an “admissible” sequence is out of reach
when h ≥ 4. Nevertheless, we have:

Theorem (Culver-Z.)
1 Family III does not contribute to Hh2

c (Gh;π0(Eh)/p) if

h−1
∑
i=1

di∣vi∣ <
pN ∣vh∣
p − 1

− 2h for all admissible sequences.

2 Family III does not contribute to Hh2

c (Gh;π2p−2(Eh)/p) if

h−1
∑
i=1

di∣vi∣ <
pN ∣vh∣
p − 1

− 2h + 2p − 2 for all admissible sequences.
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Greek letter elements

From the Vanishing Conjecture to κh = 0
The bounds above suggest RHVC is closely related to the vanishing of κh,
when 2p − 1 = h2. Indeed we have
Theorem (Culver-Z.)
If RHVC holds at height 3 and prime 5, then κ3 = 0 at p = 5.

Proof.
1 Suppose κ3 ≠ 0 at p = 5.
2 Then H9

c (G3;π8(E3)/5) ≠ 0. There is some non-zero Family III
element [α] ∈H0

c (G3; (π8(E3)/5)∨).
3 [α] cannot be v1-torsion, since H9

c (G3;π8(E3)/(5, u1)) = 0.
4 v1 ⋅ [α] corresponds to a non-zero element in H9

c (G3;π0(E3)/5).
5 H9

c (G3;π0(E3)/5) already has a copy of Fp from Family I elements. So
v1 ⋅ [α] contributes another copy to it, which would imply RHVC fails.
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Greek letter elements

Thank you!
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