Exotic K(h)-local Picard groups when $2p - 1 = h^2$ and the Vanishing Conjecture

Dominic Culver ¹ Ningchuan Zhang ²

¹Max-Planck-Institut für Mathematik

²University of Pennsylvania

eCHT Research Seminar October 14, 2021

Theorem (Hopkins-Mahowald-Sadofsky)

The exotic K(h)-local Picard group $\kappa_h = 0$ at primes p such that $(p-1) \neq h$ and $2p-1 > h^2$.

In this joint work in progress with Dominic Culver, we study κ_h at prime p such that $2p - 1 = h^2$.

Observation

- The assumption $2p-1 = h^2$ implies $(p-1) \neq h$.
- Unknown if there are infinitely many such pairs of primes and heights.

Main results

Theorem (Culver-Z.)

Suppose the prime p and the height h satisfy $2p - 1 = h^2$.

- When the Smith-Toda complex V(h-2) exists, elements X in κ_h cannot be detected by V(h-2), i.e. $X \otimes_{K(h)} V(h-2) \simeq L_{K(h)} V(h-2)$. (e.g. (h,p) = (3,5), (5,13))
- If the Reduced Homological Vanishing Conjecture holds at p = 5 and h = 3, then κ₃ = 0 at p = 5.
- **③** There are bounds on the divisibility of Greek letter elements that would imply both RHVC and $\kappa_h = 0$ when $2p 1 = h^2$.

Conjecture (Reduced Homological Vanishing Conjecture)

$$\mathbb{F}_p \simeq H_0(\mathbb{G}_h; \mathbb{F}_{p^h}) \xrightarrow{\sim} H_0(\mathbb{G}_h; \pi_0(E_h)/p)$$

Culver-Zhang (MPIM and UPenn)

 κ_h when $2p - 1 = h^2$

Strategy

- GHMR defined a map $\tau : \kappa_h \to H_c^{2p-1}(\mathbb{G}_h; \pi_{2p-2}(E_h))$, which is injective when $2p 1 = h^2$.
- **2** Show that $H_c^{h^2}(\mathbb{G}_h; M) \simeq H_c^{h^2}(\mathbb{G}_h; M/p)$ for $M = \pi_{2p-2}(E_h)$.
- Solution Use Poincaré duality to relate $H_c^{h^2}$ to both H_0 and H_c^0 :

$$H_c^{h^2}(\mathbb{S}_h; M) \simeq H_0(\mathbb{S}_h; M) \qquad H_c^{h^2}(\mathbb{S}_h; M) \simeq H_c^0(\mathbb{S}_h; M^{\vee})^{\vee}$$

- The Gross-Hopkins duality identifies the equivariant Pontryagin dual for $\pi_t(E_h)$ as an \mathbb{S}_h - E_h -module. This dual involves $E_h \langle \det \rangle$.
- Solution Identify $E_h(\det)/p$ as a limit of finite suspensions.
- \bullet Use the change of rings theorem to translate to BP computations.
- Greek letter computations.
- Use the same method to study RHVC and compare.

K(h)-local Picard groups

The K(h)-local Picard group

Definition

Denote by $\operatorname{Pic}_{K(h)}$ the Picard group of the symmetric monoidal category $(\operatorname{Sp}_{K(h)}, \otimes_{K(h)}, \mathbb{1}_{K(h)})$ where

$$X \otimes_{K(h)} Y \coloneqq L_{K(h)}(X \wedge Y), \mathbb{1}_{K(h)} \coloneqq S^0_{K(h)}.$$

Theorem (Hopkins-Mahowald-Sadofsky)

The followings are equivalent:

- $X \in \operatorname{Pic}_{K(h)}$.
- $(E_h)_*X$ is a graded invertible $(E_h)_*$ -module.

From there, we get the zeroth detection map:

$$ev_0: \operatorname{Pic}_{K(h)} \longrightarrow \operatorname{Pic}(\operatorname{graded} (E_h)_*\operatorname{-modules}) \simeq \mathbb{Z}/2$$

 $X \longmapsto (E_h)_*(X)$

Culver-Zhang (MPIM and UPenn)

 κ_h when $2p - 1 = h^2$

The algebraic K(h)-local Picard group

Let $\operatorname{Pic}_{K(h)}^{0} = \{X \in \operatorname{Pic}_{K(h)} | (E_{h})_{*}X \simeq (E_{h})_{*}\} = \ker \operatorname{ev}_{0}$. For any $X \in \operatorname{Pic}_{K(h)}^{0}$, $(E_{h})_{0}(X)$ comes with a \mathbb{G}_{h} -action. This induces the first detection map:

$$\operatorname{ev}_1 : \operatorname{Pic}^0_{K(h)} \longrightarrow \operatorname{Pic}(\mathbb{G}_h - (E_h)_0 - \operatorname{modules}) \coloneqq \operatorname{Pic}^{alg,0}_{K(h)}$$

 $X \longmapsto (E_h)_0(X)$

Theorem (Hopkins-Mahowald-Sadofsky) $\operatorname{Pic}_{K(h)}^{alg,0} \simeq H_c^1(\mathbb{G}_h; \pi_0(E_h)^{\times}).$

Example

When
$$h = 1$$
, $\operatorname{Pic}_{K(1)}^{alg,0} \simeq \operatorname{End}_{c}(\mathbb{Z}_{p}^{\times}) \simeq \begin{cases} \mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}_{2} & p = 2; \\ \mathbb{Z}/(p-1) \oplus \mathbb{Z}_{p} & p > 2. \end{cases}$

Culver-Zhang (MPIM and UPenn)

 κ_h when $2p-1 = h^2$

8/30

The exotic K(h)-local Picard group

Definition

 $\kappa_h := \ker \operatorname{ev}_1$ is called the exotic K(h)-local Picard group.

Homotopy groups of $X \in Sp_{K(h)}$ are computed by the HFPSS:

$$E_2^{s,t}(X) = H_c^s(\mathbb{G}_h; (E_h)_t(X)) = H_c^s(\mathbb{S}_h; (E_h)_t(X))^{\mathsf{Gal}} \Longrightarrow \pi_{t-s}(X)$$

The E_2 -page of the HFPSS for $X \in \kappa_h$ is the same as that for $S^0_{K(h)}$. Their differences lie in the higher differentials.

Theorem (Hopkins-Mahowald-Sadofsky)

$$\kappa_h = 0$$
 when $(p-1) + h$ and $2p - 1 > h^2$.

Question

Is
$$\kappa_h = 0$$
 when $2p - 1 = h^2$?

Culver-Zhang (MPIM and UPenn)

Proof of the Theorem

Let $X \in \kappa_h$ be an exotic element. The proof consists of four steps:

- **(**0-th line) $E_2^{0,0}(X) = \mathbb{Z}_p$ and $E_2^{0,t}(X) = 0$ when $t \neq 0$.
- (Sparseness) $E_2^{s,t}(X) = 0$ unless 2(p-1) | t. This implies the first possible non-trivial differential is $d_{2p-1}^X : E_2^{0,0}(X) \to E_2^{2p-1,2p-2}(X)$.
- (Horizontal vanishing line) When (p-1) + h, $\operatorname{cd}_p(\mathbb{S}_h) = h^2$. This implies $E_2^{s,t}(X) = 0$ when $s > h^2$.
- The above implies that there is no room for higher differentials in the HFPSS for X when (p-1) + h and $2p 1 > h^2$. As a result, any generator $[\eta] \in E_2^{0,0}(X) = \mathbb{Z}_p$ is a permanent cycle, which converges to some element $\eta \in \pi_0(X)$. One check that η factorizes as

$$\eta: S^0 \xrightarrow{L_{K(h)}} S^0_{K(h)} \xrightarrow{\sim} X$$

10/30

Algebraic detection of κ_h

GHMR used d_{2p-1} to define an algebraic detection map for κ_h :

$$\operatorname{ev}_2: \kappa_h \longrightarrow H^{2p-1}_c(\mathbb{G}_h; \pi_{2p-2}(E_h))$$

Construction (Goerss-Henn-Mahowald-Rezk)

Fix an \mathbb{G}_h -equivariant isomorphism $f^X : (E_h)_* \xrightarrow{\sim} (E_h)_*(X)$ and define ϕ^X via the following commutative diagram:

$$H^0_c(\mathbb{G}_h; \pi_0(E_h)) \xrightarrow{\phi^X} H^{2p-1}_c(\mathbb{G}_h; \pi_{2p-2}(E_h))$$

$$(f^X)_* \downarrow^\simeq \qquad \simeq \downarrow (f^X)_*$$

$$H^0_c(\mathbb{G}_h; (E_h)_0(X)) \xrightarrow{d^X_{2p-1}} H^{2p-1}_c(\mathbb{G}_h; (E_h)_{2p-2}(X))$$

Set $ev_2(X) \coloneqq \phi^X(1)$. Then ev_2 is a well-defined group homomorphism.

An exhaustive filtration on κ_h

By considering higher and higher differentials in HFPSS, we get an exhaustive filtration on κ_h , where $\kappa_h^{(m)} = \ker \operatorname{ev}_{m+1}$.

Corollary

ev₂ is injective when (p-1) + h and $4p - 3 > h^2$. As a result, $H_c^{2p-1}(\mathbb{G}_h; \pi_{2p-2}(E_h)) = 0$ implies $\kappa_h = 0$ under the same assumption.

Culver-Zhang (MPIM and UPenn)

 κ_h when $2p-1 = h^2$

The Chromatic Vanishing Conjecture

Conjecture (Hopkins)

The inclusion $\iota : \mathbb{WF}_{p^h} \hookrightarrow \pi_0(E_h)$ of \mathbb{G}_h -modules induces an isomorphism on group (co)homology in all heights, primes, and degrees:

$$\iota_* : H^s_c(\mathbb{G}_h; \mathbb{WF}_{p^h}) \xrightarrow{\sim} H^s_c(\mathbb{G}_h; \pi_0(E_h))$$
$$\iota_* : H_s(\mathbb{G}_h; \mathbb{WF}_{p^h}) \xrightarrow{\sim} H_s(\mathbb{G}_h; \pi_0(E_h))$$

The cohomological version of the conjecture has been proved in the following cases:

- s = 0 for all h and p.
- $h \le 2$ for all p and s. (SY95, Beh12, Koh13, GHM14, BGH17, BDM+18, ...)

Conjecture (Reduced Homological Vanishing Conjecture)

$$\mathbb{F}_p \simeq H_0(\mathbb{G}_h; \mathbb{F}_{p^h}) \xrightarrow{\sim} H_0(\mathbb{G}_h; \pi_0(E_h)/p)$$

Culver-Zhang (MPIM and UPenn)

 κ_h when $2p - 1 = h^2$

13/30

$\operatorname{Pic}_{K(h)}$ for h = 1, 2

• (HMS) When
$$h = 1$$
, $\operatorname{Pic}_{K(1)} = \begin{cases} \mathbb{Z}_2 \times \mathbb{Z}/4 \times \mathbb{Z}/2 & p = 2; \\ \mathbb{Z}_p \times \mathbb{Z}/2(p-1) & p > 2. \end{cases}$

•
$$\operatorname{ev}_1 : \operatorname{Pic}_{K(1)}^0 \to \operatorname{Pic}_{K(1)}^{alg,0}$$
 is surjective.

• HMS's Theorem implies $\kappa_1 = 0$ when p > 2.

• When
$$p = 2$$
, $ev_2 : \kappa_1 \xrightarrow{\sim} H^3_c(\mathbb{G}_1; \pi_2(E_1)) = \mathbb{Z}/2$.

• When
$$h = 2$$
 and $p \ge 3$, $\operatorname{Pic}_{K(2)} = \begin{cases} \mathbb{Z}_3^2 \times \mathbb{Z}/16 \times \mathbb{Z}/3 \times \mathbb{Z}/3 & p = 3; \\ \mathbb{Z}_p^2 \times \mathbb{Z}/2(p^2 - 1) & p \ge 5. \end{cases}$

•
$$\operatorname{ev}_2 : \operatorname{Pic}_{K(2)}^0 \to \operatorname{Pic}_{K(2)}^{alg,0}$$
 is surjective.

- (Hopkins) When $p \ge 5$, $\operatorname{Pic}_{K(2)}^{alg,0} = \mathbb{Z}_p^2 \times \mathbb{Z}/(p^2 1)$. This computation uses the Vanishing Conjecture at s = 1.
- (Karamanov) The above formula holds at p = 3.
- HMS's Theorem implies $\kappa_2 = 0$ when $p \ge 5$.
- (GHMR) When p = 3, $ev_2 : \kappa_2 \xrightarrow{\sim} H^5_c(\mathbb{G}_2; \pi_4(E_2)) = \mathbb{Z}/3 \times \mathbb{Z}/3$.

Duality

Duality

Bounded torsion

Proposition

Let $M = \pi_{2p-2}(E_h)$. Then $H_c^{h^2}(\mathbb{G}_h; M) \simeq H_c^{h^2}(\mathbb{G}_h; M/p)$ if (p-1) + h.

Proof.

From the SES of \mathbb{G}_h -presentations

$$0 \longrightarrow M \xrightarrow{-\cdot p} M \longrightarrow M/p \longrightarrow 0$$

we get a LES of group cohomology of \mathbb{G}_h . By considering the action of the center $\mathbb{Z}_p^{\times} \trianglelefteq \mathbb{S}_h$ on M, we get a Lyndon-Hochschild-Serre SS:

$$E_2^{r,s} = H_c^r(\mathbb{G}_h/\mathbb{Z}_p^{\times}; H_c^s(\mathbb{Z}_p^{\times}; M)) \Longrightarrow H_c^{r+s}(\mathbb{G}_h; M).$$

This SS implies $H_c^*(\mathbb{G}_h; M)$ is *p*-torsion. Now from the LES in group cohomology, we conclude $H_c^{h^2}(\mathbb{G}_h; M) \simeq H_c^{h^2}(\mathbb{G}_h; M/p)$, since $h^2 = \operatorname{cd}_p(\mathbb{S}_h)$ when $(p-1) \neq h$.

Culver-Zhang (MPIM and UPenn)

Duality

Poincaré duality

Goal

Compute
$$H_c^{h^2}(\mathbb{S}_h; \pi_t(E_h)/p)^{\mathsf{Gal}}$$
 when $(p-1) \neq h$ and $t = 0$ or $2p-2$.

A direct computation of $H_c^{h^2}$ when $h \ge 3$ seems to be out of reach. Instead, we use Poincaré duality to relate this computation to H_0 and H_c^0 .

Theorem (Lazard, Symonds-Weigel)

 \mathbb{S}_h is a *p*-adic Poincaré duality group of dimension h^2 . More precisely, let M be a *p*-complete \mathbb{S}_h -representation. Then we have

 $H^s_c(\mathbb{S}_h; M) \simeq H_{h^2-s}(\mathbb{S}_h; M) \qquad H^s_c(\mathbb{S}_h; M) \simeq H^{h^2-s}_c(\mathbb{S}_h; M^{\vee})^{\vee},$

where $(-)^{\vee} := \operatorname{Hom}(-, \mathbb{Q}_p/\mathbb{Z}_p)$ is the *p*-adic Pontryagin dual.

Corollary

RHVC is equivalent to the mod-p CVC at $s = h^2$ when (p-1) + h.

Culver-Zhang (MPIM and UPenn)

Gross-Hopkins duality

We will use the second form of Poincaré duality, and relate it to the Greek letter computations. To do so, we must identity the \mathbb{S}_h -equivariant Pontryagin dual M^{\vee} for $M = \pi_t(E_h)/p$.

Theorem (Gross-Hopkins)

Let
$$\mathfrak{m} = (p, u_1, \cdots, u_{h-1}) \trianglelefteq \pi_0(E_h)$$
 be the maximal ideal, then

 $\pi_t(E_h)^{\vee} \simeq \pi_{2h-t} E_h \langle \det \rangle / \mathfrak{m}^{\infty},$

where (det) denotes the determinant twist of the stabilizer group action.

The determinant twist mod \boldsymbol{p}

So far, we have showed:

$$H_c^{h^2}(\mathbb{S}_h; \pi_t(E_h)/p) \simeq H_c^0(\mathbb{S}_h; \pi_{2h-t}(E_h)\langle \det \rangle/(p) + \mathfrak{m}^{\infty})^{\vee}.$$

The next step is to identify the determinant twist mod p.

Theorem (Gross-Hopkins)

There is an isomorphism of \mathbb{G}_h -modules:

$$\pi_*(E_h)(\det)/p \simeq \pi_*\left(\sum_{N\to\infty}^{\lim p N|v_h|} E_h\right)/p.$$

More precisely, let $J \leq \pi_0(E_h)$ be an open invariant ideal containing p, such that $(E_h)_*/J$ has a $v_h^{p^N}$ -self map, then

$$\pi_t(E_h)\langle \det \rangle/J \simeq \pi_t \left(\Sigma^{\frac{p^N|v_h|}{p-1}} E_h \right) / J = \pi_{t - \frac{p^N|v_h|}{p-1}}(E_h)/J.$$

Culver-Zhang (MPIM and UPenn)

Fixed points of the quotient mod $(p) + \mathfrak{m}^{\infty}$

Let M be a $\mathbb{G}_h \cdot \pi_0(E_h)$ -module. Recall $M/(p) + \mathfrak{m}^{\infty} \coloneqq \underset{p \in J \trianglelefteq E_h}{\operatorname{containing}} M/J$, where J ranges over all open invariant ideals of E_h containing p. Notice this colimit is filtered and \mathbb{S}_h is topologically finitely generated. This implies the canonical map

$$\operatorname{colim}_{p \in J \trianglelefteq E_h} H^0_c(\mathbb{S}_h; M/J) \xrightarrow{\sim} H^0_c(\mathbb{S}_h; M/(p) + \mathfrak{m}^\infty)$$

is an isomorphism. Consequently, we have established in this section:

$$H_c^{h^2}(\mathbb{G}_h; \pi_t(E_h)/p) \simeq \operatorname{colim}_{p \in J \trianglelefteq E_h} H_c^0 \left(\mathbb{S}_h; \pi_{2h-t-\frac{p^{N(J)}|v_h|}{p-1}}(E_h)/J \right)^{\mathsf{Gal}},$$

where N(J) is the smallest N so that $v_h^{p^N}$ is invariant mod J. To prove LHS is 0 (\mathbb{F}_p) when t = 2p - 2 (t = 0), we want to show that every single term in the colimit on RHS is zero (\mathbb{F}_p).

Culver-Zhang (MPIM and UPenn)

Greek letter elements

The Change of Rings Theorem

Let M be a BP_*BP -comodule. Denote $\operatorname{Ext}_{BP_*BP}^{s,t}(BP_*, M)$ by $H^{s,t}(M)$.

Theorem (Change of Rings)

Let $\mathcal{I}_h = (p, v_1, v_2, \dots, v_{h-1}) \trianglelefteq BP_*$ be an invariant prime ideal and $\mathfrak{m} \trianglelefteq \pi_0(E_h)$ be the maximal ideal. Then there is an isomorphism:

$$H_c^s(\mathbb{G}_h; \pi_t(E_h)/\mathfrak{m}^\infty) \simeq H^{s,t}(v_h^{-1}BP_*/\mathcal{I}_h^\infty)$$

Let J be an invariant ideal of BP_* such that $p \in J \subseteq \mathcal{I}_h$ and that N is the smallest number so that $v_h^{p^N}$ is invariant mod J. Using the Change of Rings Theorem, we can translate our computational goals to:

$$H^{0,2h-t-\frac{p^{N}|v_{h}|}{p-1}}(v_{h}^{-1}BP_{*}/J) = \begin{cases} \mathbb{F}_{p}, & t = 0; \\ 0, & t = 2p-2 \end{cases} \text{ holds for all such } J$$

Greek letter elements mod \mathcal{I}_{h-1}

Let
$$M_{h-k}^k = v_h^{-1} BP_* / (p, v_1, \dots, v_{k-1}, v_k^{\infty}, \dots, v_{h-1}^{\infty}).$$

Theorem (Miller-Ravenel-Wilson)

$$\begin{split} H^{0,*}(M_{h-1}^{1}) \text{ is additively generated by the following elements:} \\ I. \quad \frac{v_{h}^{s}}{pv_{1}\cdots v_{h-2}v_{h-1}^{j}}, \text{ where } (p,s) = 1. \\ II. \quad \frac{1}{pv_{1}\cdots v_{h-2}v_{h-1}^{j}}, \text{ where } j \geq 1. \\ II. \quad \frac{x_{h,N}^{s}}{pv_{1}\cdots v_{h-2}v_{h-1}^{j}}, \text{ where } N \geq 1, x_{h,N} \text{ is some replacement of } v_{h}^{p^{N}}, (p,s) = 1, \\ \text{ and } 1 \leq j \leq a_{h,N} \text{ for some } a_{h,N} \text{ defined by a recursive formula.} \end{split}$$

For any open invariant ideal $\mathcal{I}_{h-1} \subseteq J \subseteq \mathcal{I}_h$, $H^{0,*}(v_h^{-1}BP_*/J)$ is then generated by the elements above that satisfy $J \subseteq (p, v_1, \dots, v_{h-2}, v_{h-1}^j)$.

$$H_c^{h^2} \mod (p, u_1, \cdots, u_{h-2})$$

Lemma

 $\alpha \in H^{0,*}(M^1_{h-1})$ corresponds some element in $H^{h^2}(\mathbb{G}_h; \pi_t(E_h)/(p, u_1, \cdots, u_{h-2}))$ iff

$$|\alpha| \equiv 2h - t - \frac{p^N |v_h|}{p - 1} \mod p^N |v_h|$$

Corollary

Let
$$t \in \mathbb{Z}$$
. $H_c^{h^2}(\mathbb{G}_h, \pi_t(E_h)/(p, u_1, \dots, u_{h-2}))$ is zero unless:

- (Family I) $|v_h|$ divides t.
- (Family III) $t = sp^N |v_h| \frac{(p^N 1)|v_h|}{p-1} + (j-1)|v_{h-1}|$, for some $N \ge 1$ and $1 \le j \le a_{h,N}$.

When h = 2, $p \ge 5$, we recover Behrens' computation of $H_c^4(\mathbb{G}_2; \pi_t(E_2)/p)$.

25 / 30

Culver-Zhang (MPIM and UPenn)

Implications of the MRW computations

When (p-1) + h, the above computation yields:

Corollary

- $H_0(\mathbb{G}_h; \pi_0(E_h)/\mathcal{I}_{h-1}) = H_c^{h^2}(\mathbb{G}_h; \pi_0(E_h)/\mathcal{I}_{h-1}) = \mathbb{F}_p.$
- $H_0(\mathbb{G}_h; \pi_{2p-2}(E_h)/\mathcal{I}_{h-1}) = H_c^{h^2}(\mathbb{G}_h; \pi_{2p-2}(E_h)/\mathcal{I}_{h-1}) = 0.$

When $2p - 1 = h^2$, the latter measures whether the exotic elements in κ_h are detected by the Smith-Toda complex $V(h-2) := S^0/(p, v_1, \dots, v_{h-2})$. From this we conclude

Theorem (Culver-Z.)

Suppose the Smith-Toda complex V(h-2) exists and $2p-1 = h^2$. Then

$$X \otimes_{K(h)} V(h-2) \simeq L_{K(h)} V(h-2)$$
, for any $X \in \kappa_h$.

In particular, this is true when (h, p) = (3, 5) and (5, 13).

Culver-Zhang (MPIM and UPenn)

Greek letter elements mod \boldsymbol{p}

Proposition

As an \mathbb{F}_p -vector space, $H^{0,*}(M_1^{h-1})$ is generated by elements in the following families:

By analyzing the degrees of elements in Families I and II, we get

- Family I contributes a copy of \mathbb{F}_p to $H_c^{h^2}(\mathbb{G}_h; \pi_t(E_h)/p)$ when $|v_h| \mid t$.
- Family II does not contribute to $H_c^{h^2}(\mathbb{G}_h; \pi_t(E_h)/p)$ when $t \in \mathbb{Z}$.

Bounds on divisibility

It now remains to study Family III. The precise condition for $(p, v_1^{d_1}, \cdots, v_{h-1}^{d_{h-1}}, y_{N,h}^s)$ to be an "admissible" sequence is out of reach when $h \ge 4$. Nevertheless, we have:

Theorem (Culver-Z.)

• Family III does not contribute to $H_c^{h^2}(\mathbb{G}_h; \pi_0(E_h)/p)$ if

$$\sum_{i=1}^{h-1} d_i |v_i| < rac{p^N |v_h|}{p-1} - 2h$$
 for all admissible sequences.

2 Family III does not contribute to $H_c^{h^2}(\mathbb{G}_h; \pi_{2p-2}(E_h)/p)$ if

$$\sum_{i=1}^{h-1} d_i |v_i| < \frac{p^N |v_h|}{p-1} - 2h + 2p - 2 \text{ for all admissible sequences.}$$

From the Vanishing Conjecture to $\kappa_h = 0$

The bounds above suggest RHVC is closely related to the vanishing of κ_h , when $2p-1=h^2.$ Indeed we have

Theorem (Culver-Z.)

If RHVC holds at height 3 and prime 5, then $\kappa_3 = 0$ at p = 5.

Proof.

• Suppose
$$\kappa_3 \neq 0$$
 at $p = 5$.

- ② Then $H_c^9(\mathbb{G}_3; \pi_8(E_3)/5) \neq 0$. There is some non-zero Family III element $[\alpha] \in H_c^0(\mathbb{G}_3; (\pi_8(E_3)/5)^{\vee})$.
- **3** $[\alpha]$ cannot be v_1 -torsion, since $H^9_c(\mathbb{G}_3; \pi_8(E_3)/(5, u_1)) = 0$.
- $v_1 \cdot [\alpha]$ corresponds to a non-zero element in $H^9_c(\mathbb{G}_3; \pi_0(E_3)/5)$.
- $H^9_c(\mathbb{G}_3; \pi_0(E_3)/5)$ already has a copy of \mathbb{F}_p from Family I elements. So $v_1 \cdot [\alpha]$ contributes another copy to it, which would imply RHVC fails.

Thank you!