Exotic $K(h)$-local Picard groups when $2 p-1=h^{2}$ and the Vanishing Conjecture

Dominic Culver ${ }^{1}$ Ningchuan Zhang ${ }^{2}$

${ }^{1}$ Max-Planck-Institut für Mathematik
${ }^{2}$ University of Pennsylvania
eCHT Research Seminar October 14, 2021

(1) $K(h)$-local Picard groups

(2) Duality
(3) Greek letter elements

Overview

Theorem (Hopkins-Mahowald-Sadofsky)
The exotic $K(h)$-local Picard group $\kappa_{h}=0$ at primes p such that $(p-1)+h$ and $2 p-1>h^{2}$.

In this joint work in progress with Dominic Culver, we study κ_{h} at prime p such that $2 p-1=h^{2}$.

Observation

- The assumption $2 p-1=h^{2}$ implies $(p-1)+h$.
- Unknown if there are infinitely many such pairs of primes and heights.

Main results

Theorem (Culver-Z.)

Suppose the prime p and the height h satisfy $2 p-1=h^{2}$.
(1) When the Smith-Toda complex $V(h-2)$ exists, elements X in κ_{h} cannot be detected by $V(h-2)$, i.e.

$$
X \otimes_{K(h)} V(h-2) \simeq L_{K(h)} V(h-2) .(e . g .(h, p)=(3,5),(5,13))
$$

(2) If the Reduced Homological Vanishing Conjecture holds at $p=5$ and $h=3$, then $\kappa_{3}=0$ at $p=5$.
(3) There are bounds on the divisibility of Greek letter elements that would imply both RHVC and $\kappa_{h}=0$ when $2 p-1=h^{2}$.

Conjecture (Reduced Homological Vanishing Conjecture)

$$
\mathbb{F}_{p} \simeq H_{0}\left(\mathbb{G}_{h} ; \mathbb{F}_{p^{h}}\right) \xrightarrow{\sim} H_{0}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right) / p\right)
$$

Strategy

(1) GHMR defined a map $\tau: \kappa_{h} \rightarrow H_{c}^{2 p-1}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right)\right)$, which is injective when $2 p-1=h^{2}$.
(2) Show that $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; M\right) \simeq H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; M / p\right)$ for $M=\pi_{2 p-2}\left(E_{h}\right)$.
(3) Use Poincaré duality to relate $H_{c}^{h^{2}}$ to both H_{0} and H_{c}^{0} :

$$
H_{c}^{h^{2}}\left(\mathbb{S}_{h} ; M\right) \simeq H_{0}\left(\mathbb{S}_{h} ; M\right) \quad H_{c}^{h^{2}}\left(\mathbb{S}_{h} ; M\right) \simeq H_{c}^{0}\left(\mathbb{S}_{h} ; M^{\vee}\right)^{\vee}
$$

(9) The Gross-Hopkins duality identifies the equivariant Pontryagin dual for $\pi_{t}\left(E_{h}\right)$ as an \mathbb{S}_{h} - E_{h}-module. This dual involves $E_{h}\langle$ det \rangle.
(0) Identify $E_{h}\langle\operatorname{det}\rangle / p$ as a limit of finite suspensions.
(0) Use the change of rings theorem to translate to $B P$ computations.
(1) Greek letter computations.
(8) Use the same method to study RHVC and compare.

$K(h)$-local Picard groups

The $K(h)$-local Picard group

Definition

Denote by $\mathrm{Pic}_{K(h)}$ the Picard group of the symmetric monoidal category $\left(\mathrm{Sp}_{K(h)}, \otimes_{K(h)}, \mathbb{1}_{K(h)}\right)$ where

$$
X \otimes_{K(h)} Y:=L_{K(h)}(X \wedge Y), \mathbb{1}_{K(h)}:=S_{K(h)}^{0}
$$

Theorem (Hopkins-Mahowald-Sadofsky)
The followings are equivalent:

- $X \in \mathrm{Pic}_{K(h)}$.
- $\left(E_{h}\right)_{*} X$ is a graded invertible $\left(E_{h}\right)_{*}$-module.

From there, we get the zeroth detection map:

$$
\begin{aligned}
\mathrm{ev}_{0}: \operatorname{Pic}_{K(h)} & \longrightarrow \operatorname{Pic}\left(\text { graded }\left(E_{h}\right)_{*} \text {-modules }\right) \simeq \mathbb{Z} / 2 \\
X & \longmapsto\left(E_{h}\right)_{*}(X)
\end{aligned}
$$

The algebraic $K(h)$-local Picard group

Let $\operatorname{Pic}_{K(h)}^{0}=\left\{X \in \operatorname{Pic}_{K(h)} \mid\left(E_{h}\right)_{*} X \simeq\left(E_{h}\right)_{*}\right\}=$ ker ev ${ }_{0}$. For any $X \in \operatorname{Pic}_{K(h)}^{0},\left(E_{h}\right)_{0}(X)$ comes with a \mathbb{G}_{h}-action. This induces the first detection map:

$$
\begin{aligned}
\mathrm{ev}_{1}: \operatorname{Pic}_{K(h)}^{0} & \longrightarrow \operatorname{Pic}\left(\mathbb{G}_{h}-\left(E_{h}\right)_{0} \text {-modules }\right):=\operatorname{Pic}_{K(h)}^{a l g, 0} \\
X & \longmapsto\left(E_{h}\right)_{0}(X)
\end{aligned}
$$

Theorem (Hopkins-Mahowald-Sadofsky)
$\mathrm{Pic}_{K(h)}^{a l g, 0} \simeq H_{c}^{1}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right)^{\times}\right)$.

Example

When $h=1, \operatorname{Pic}_{K(1)}^{a l g, 0} \simeq \operatorname{End}_{c}\left(\mathbb{Z}_{p}^{\times}\right) \simeq \begin{cases}\mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \oplus \mathbb{Z}_{2} & p=2 ; \\ \mathbb{Z} /(p-1) \oplus \mathbb{Z}_{p} & p>2 .\end{cases}$

The exotic $K(h)$-local Picard group

Definition

$\kappa_{h}:=\operatorname{ker~ev}_{1}$ is called the exotic $K(h)$-local Picard group.
Homotopy groups of $X \in \mathrm{Sp}_{K(h)}$ are computed by the HFPSS:

$$
E_{2}^{s, t}(X)=H_{c}^{s}\left(\mathbb{G}_{h} ;\left(E_{h}\right)_{t}(X)\right)=H_{c}^{s}\left(\mathbb{S}_{h} ;\left(E_{h}\right)_{t}(X)\right)^{\mathrm{Gal}} \Longrightarrow \pi_{t-s}(X)
$$

The E_{2}-page of the HFPSS for $X \in \kappa_{h}$ is the same as that for $S_{K(h)}^{0}$. Their differences lie in the higher differentials.

Theorem (Hopkins-Mahowald-Sadofsky)
$\kappa_{h}=0$ when $(p-1)+h$ and $2 p-1>h^{2}$.

Question

Is $\kappa_{h}=0$ when $2 p-1=h^{2}$?

Proof of the Theorem

Let $X \in \kappa_{h}$ be an exotic element. The proof consists of four steps:
(1) (0-th line) $E_{2}^{0,0}(X)=\mathbb{Z}_{p}$ and $E_{2}^{0, t}(X)=0$ when $t \neq 0$.
(2) (Sparseness) $E_{2}^{s, t}(X)=0$ unless $2(p-1) \mid t$. This implies the first possible non-trivial differential is $d_{2 p-1}^{X}: E_{2}^{0,0}(X) \rightarrow E_{2}^{2 p-1,2 p-2}(X)$.
(3) Horizontal vanishing line) When $(p-1)+h, \operatorname{cd}_{p}\left(\mathbb{S}_{h}\right)=h^{2}$. This implies $E_{2}^{s, t}(X)=0$ when $s>h^{2}$.
(9) The above implies that there is no room for higher differentials in the HFPSS for X when $(p-1)+h$ and $2 p-1>h^{2}$. As a result, any generator $[\eta] \in E_{2}^{0,0}(X)=\mathbb{Z}_{p}$ is a permanent cycle, which converges to some element $\eta \in \pi_{0}(X)$. One check that η factorizes as

$$
\eta: S^{0} \xrightarrow{L_{K(h)}} S_{K(h)}^{0} \xrightarrow{\sim} X
$$

Algebraic detection of κ_{h}

GHMR used $d_{2 p-1}$ to define an algebraic detection map for κ_{h} :

$$
\mathrm{ev}_{2}: \kappa_{h} \longrightarrow H_{c}^{2 p-1}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right)\right)
$$

Construction (Goerss-Henn-Mahowald-Rezk)

Fix an \mathbb{G}_{h}-equivariant isomorphism $f^{X}:\left(E_{h}\right)_{*} \xrightarrow{\sim}\left(E_{h}\right)_{*}(X)$ and define ϕ^{X} via the following commutative diagram:

$$
\left.\begin{array}{rl}
H_{c}^{0}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right)\right)-\phi^{X} & H_{c}^{2 p-1}\left(\mathbb{G}_{h} ;\right.
\end{array} \pi_{2 p-2}\left(E_{h}\right)\right)
$$

Set $\mathrm{ev}_{2}(X):=\phi^{X}(1)$. Then ev_{2} is a well-defined group homomorphism.

An exhaustive filtration on κ_{h}

By considering higher and higher differentials in HFPSS, we get an exhaustive filtration on κ_{h}, where $\kappa_{h}^{(m)}=\operatorname{ker~ev}_{m+1}$.

$$
\begin{aligned}
& \kappa_{h}^{(m)} \xrightarrow{\mathrm{In}^{(m)}}{ }^{\mathrm{ev}_{m+2}} E_{2 m(p-1)+2}^{2(m+1)(p-1)+1,2(m+1)(p-1)} \\
& \text { in } \\
& \kappa_{h}^{(1)} \xrightarrow{\mathrm{In}_{3}} E_{2 p}^{4 p-3,4 p-4} \\
& \text { in } \\
& \kappa_{h} \xrightarrow{\mathrm{ev}_{2}} E_{2}^{2 p-1,2 p-2}=H_{c}^{2 p-1}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right)\right)
\end{aligned}
$$

Corollary

ev_{2} is injective when $(p-1)+h$ and $4 p-3>h^{2}$. As a result, $H_{c}^{2 p-1}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right)\right)=0$ implies $\kappa_{h}=0$ under the same assumption.

The Chromatic Vanishing Conjecture

Conjecture (Hopkins)

The inclusion $\iota: \mathbb{W F}_{p^{h}} \rightarrow \pi_{0}\left(E_{h}\right)$ of \mathbb{G}_{h}-modules induces an isomorphism on group (co)homology in all heights, primes, and degrees:

$$
\begin{aligned}
& \iota_{*}: H_{c}^{s}\left(\mathbb{G}_{h} ; \mathbb{W F}_{p^{h}}\right) \xrightarrow{\sim} H_{c}^{s}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right)\right) \\
& \iota_{*}: H_{s}\left(\mathbb{G}_{h} ; \mathbb{W F}_{p^{h}}\right) \xrightarrow{\sim} H_{s}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right)\right)
\end{aligned}
$$

The cohomological version of the conjecture has been proved in the following cases:

- $s=0$ for all h and p.
- $h \leq 2$ for all p and s. (SY95, Beh12, Koh13, GHM14, BGH17, BDM+18, ...)

Conjecture (Reduced Homological Vanishing Conjecture)

$$
\mathbb{F}_{p} \simeq H_{0}\left(\mathbb{G}_{h} ; \mathbb{F}_{p^{h}}\right) \xrightarrow{\sim} H_{0}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right) / p\right)
$$

$\mathrm{Pic}_{K(h)}$ for $h=1,2$

- (HMS) When $h=1, \operatorname{Pic}_{K(1)}= \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z} / 4 \times \mathbb{Z} / 2 & p=2 ; \\ \mathbb{Z}_{p} \times \mathbb{Z} / 2(p-1) & p>2\end{cases}$
- $\mathrm{ev}_{1}: \mathrm{Pic}_{K(1)}^{0} \rightarrow \mathrm{Pic}_{K(1)}^{a l g}$, is surjective.
- HMS's Theorem implies $\kappa_{1}=0$ when $p>2$.
- When $p=2, \mathrm{ev}_{2}: \kappa_{1} \xrightarrow{\sim} H_{c}^{3}\left(\mathbb{G}_{1} ; \pi_{2}\left(E_{1}\right)\right)=\mathbb{Z} / 2$.
- When $h=2$ and $p \geq 3, \operatorname{Pic}_{K(2)}=\left\{\begin{array}{cc}\mathbb{Z}_{3}^{2} \times \mathbb{Z} / 16 \times \mathbb{Z} / 3 \times \mathbb{Z} / 3 & p=3 ; \\ \mathbb{Z}_{p}^{2} \times \mathbb{Z} / 2\left(p^{2}-1\right) & p \geq 5 .\end{array}\right.$
- $\mathrm{ev}_{2}: \mathrm{Pic}_{K(2)}^{0} \rightarrow \mathrm{Pic}_{K(2)}^{a l g, 0}$ is surjective.
- (Hopkins) When $p \geq 5, \mathrm{Pic}_{K(2)}^{\text {alg } 0}=\mathbb{Z}_{p}^{2} \times \mathbb{Z} /\left(p^{2}-1\right)$. This computation uses the Vanishing Conjecture at $s=1$.
- (Karamanov) The above formula holds at $p=3$.
- HMS's Theorem implies $\kappa_{2}=0$ when $p \geq 5$.
- (GHMR) When $p=3, \mathrm{ev}_{2}: \kappa_{2} \xrightarrow{\sim} H_{c}^{5}\left(\mathbb{G}_{2} ; \pi_{4}\left(E_{2}\right)\right)=\mathbb{Z} / 3 \times \mathbb{Z} / 3$.

Duality

Bounded torsion

Proposition

Let $M=\pi_{2 p-2}\left(E_{h}\right)$. Then $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; M\right) \simeq H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; M / p\right)$ if $(p-1)+h$.

Proof.

From the SES of \mathbb{G}_{h}-presentations

$$
0 \longrightarrow M \xrightarrow{-\cdot p} M \longrightarrow M / p \longrightarrow 0,
$$

we get a LES of group cohomology of \mathbb{G}_{h}. By considering the action of the center $\mathbb{Z}_{p}^{\times} \unlhd \mathbb{S}_{h}$ on M, we get a Lyndon-Hochschild-Serre SS:

$$
E_{2}^{r, s}=H_{c}^{r}\left(\mathbb{G}_{h} / \mathbb{Z}_{p}^{\times} ; H_{c}^{s}\left(\mathbb{Z}_{p}^{\times} ; M\right)\right) \Longrightarrow H_{c}^{r+s}\left(\mathbb{G}_{h} ; M\right) .
$$

This SS implies $H_{c}^{*}\left(\mathbb{G}_{h} ; M\right)$ is p-torsion. Now from the LES in group cohomology, we conclude $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; M\right) \simeq H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; M / p\right)$, since $h^{2}=\operatorname{cd}_{p}\left(\mathbb{S}_{h}\right)$ when $(p-1)+h$.

Poincaré duality

Goal
Compute $H_{c}^{h^{2}}\left(\mathbb{S}_{h} ; \pi_{t}\left(E_{h}\right) / p\right)^{\text {Gal }}$ when $(p-1)+h$ and $t=0$ or $2 p-2$.
A direct computation of $H_{c}^{h^{2}}$ when $h \geq 3$ seems to be out of reach. Instead, we use Poincaré duality to relate this computation to H_{0} and H_{c}^{0}.
Theorem (Lazard, Symonds-Weigel)
\mathbb{S}_{h} is a p-adic Poincaré duality group of dimension h^{2}.More precisely, let M be a p-complete \mathbb{S}_{h}-representation. Then we have

$$
H_{c}^{s}\left(\mathbb{S}_{h} ; M\right) \simeq H_{h^{2}-s}\left(\mathbb{S}_{h} ; M\right) \quad H_{c}^{s}\left(\mathbb{S}_{h} ; M\right) \simeq H_{c}^{h^{2}-s}\left(\mathbb{S}_{h} ; M^{\vee}\right)^{\vee}
$$

where $(-)^{\vee}:=\operatorname{Hom}\left(-, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$ is the p-adic Pontryagin dual.

Corollary

RHVC is equivalent to the mod-p CVC at $s=h^{2}$ when $(p-1)+h$.

Gross-Hopkins duality

We will use the second form of Poincaré duality, and relate it to the Greek letter computations. To do so, we must identity the \mathbb{S}_{h}-equivariant Pontryagin dual M^{\vee} for $M=\pi_{t}\left(E_{h}\right) / p$.

Theorem (Gross-Hopkins)

Let $\mathfrak{m}=\left(p, u_{1}, \cdots, u_{h-1}\right) \unlhd \pi_{0}\left(E_{h}\right)$ be the maximal ideal, then

$$
\pi_{t}\left(E_{h}\right)^{\vee} \simeq \pi_{2 h-t} E_{h}\langle\operatorname{det}\rangle / \mathfrak{m}^{\infty},
$$

where $\langle\operatorname{det}\rangle$ denotes the determinant twist of the stabilizer group action.

The determinant twist $\bmod p$

So far, we have showed:

$$
H_{c}^{h^{2}}\left(\mathbb{S}_{h} ; \pi_{t}\left(E_{h}\right) / p\right) \simeq H_{c}^{0}\left(\mathbb{S}_{h} ; \pi_{2 h-t}\left(E_{h}\right)\langle\operatorname{det}\rangle /(p)+\mathfrak{m}^{\infty}\right)^{\vee}
$$

The next step is to identify the determinant twist mod p.
Theorem (Gross-Hopkins)
There is an isomorphism of \mathbb{G}_{h}-modules:

$$
\pi_{*}\left(E_{h}\right)\langle\operatorname{det}\rangle / p \simeq \pi_{*}\left(\sum^{\lim _{N \rightarrow \infty} \frac{p^{N}\left|v_{h}\right|}{p-1}} E_{h}\right) / p
$$

More precisely, let $J \unlhd \pi_{0}\left(E_{h}\right)$ be an open invariant ideal containing p, such that $\left(E_{h}\right)_{*} / J$ has a $v_{h}^{p^{N}}$-self map, then

$$
\pi_{t}\left(E_{h}\right)\langle\operatorname{det}\rangle / J \simeq \pi_{t}\left(\Sigma^{\frac{p^{N}\left|v_{h}\right|}{p-1}} E_{h}\right) / J=\pi_{t-\frac{p^{N}\left|v_{h}\right|}{p-1}}\left(E_{h}\right) / J
$$

Fixed points of the quotient $\bmod (p)+\mathfrak{m}^{\infty}$

Let M be a $\mathbb{G}_{h}-\pi_{0}\left(E_{h}\right)$-module. Recall $M /(p)+\mathfrak{m}^{\infty}:=\underset{p \in J \triangle E_{h}}{\operatorname{colim}} M / J$, where J ranges over all open invariant ideals of E_{h} containing p. Notice this colimit is filtered and \mathbb{S}_{h} is topologically finitely generated. This implies the canonical map

$$
\underset{p \in J \triangle E_{h}}{\operatorname{colim}} H_{c}^{0}\left(\mathbb{S}_{h} ; M / J\right) \xrightarrow{\sim} H_{c}^{0}\left(\mathbb{S}_{h} ; M /(p)+\mathfrak{m}^{\infty}\right)
$$

is an isomorphism. Consequently, we have established in this section:

$$
H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{t}\left(E_{h}\right) / p\right) \simeq \operatorname{colim}_{p \in J \subseteq E_{h}} H_{c}^{0}\left(\mathbb{S}_{h} ; \pi_{2 h-t-\frac{p^{N(J)}\left|v_{h}\right|}{p-1}}\left(E_{h}\right) / J\right)^{\text {Gal }},
$$

where $N(J)$ is the smallest N so that $v_{h}^{p^{N}}$ is invariant $\bmod J$. To prove LHS is $0\left(\mathbb{F}_{p}\right)$ when $t=2 p-2(t=0)$, we want to show that every single term in the colimit on RHS is zero $\left(\mathbb{F}_{p}\right)$.

Greek letter elements

The Change of Rings Theorem

Let M be a $B P_{*} B P$-comodule. Denote $\operatorname{Ext}_{B P_{*}}^{s, t} P_{P}\left(B P_{*}, M\right)$ by $H^{s, t}(M)$.

Theorem (Change of Rings)

Let $\mathcal{I}_{h}=\left(p, v_{1}, v_{2}, \cdots, v_{h-1}\right) \unlhd B P_{\star}$ be an invariant prime ideal and $\mathfrak{m} \unlhd \pi_{0}\left(E_{h}\right)$ be the maximal ideal. Then there is an isomorphism:

$$
H_{c}^{s}\left(\mathbb{G}_{h} ; \pi_{t}\left(E_{h}\right) / \mathfrak{m}^{\infty}\right) \simeq H^{s, t}\left(v_{h}^{-1} B P_{*} / \mathcal{I}_{h}^{\infty}\right)
$$

Let J be an invariant ideal of $B P_{*}$ such that $p \in J \subseteq \mathcal{I}_{h}$ and that N is the smallest number so that $v_{h}^{p^{N}}$ is invariant $\bmod J$. Using the Change of Rings Theorem, we can translate our computational goals to:

$$
H^{0,2 h-t-\frac{p^{N} p_{v_{h} \mid}}{p-1}}\left(v_{h}^{-1} B P_{*} / J\right)=\left\{\begin{array}{cl}
\mathbb{F}_{p}, & t=0 ; \\
0, & t=2 p-2
\end{array} \quad \text { holds for all such } J .\right.
$$

Greek letter elements $\bmod \mathcal{I}_{h-1}$

Let $M_{h-k}^{k}=v_{h}^{-1} B P_{\star} /\left(p, v_{1}, \cdots, v_{k-1}, v_{k}^{\infty}, \cdots, v_{h-1}^{\infty}\right)$.

Theorem (Miller-Ravenel-Wilson)

$H^{0, *}\left(M_{h-1}^{1}\right)$ is additively generated by the following elements:
I. $\frac{v_{h}^{s}}{p v_{1} \cdots v_{h-2} v_{h-1}}$, where $(p, s)=1$.
II. $\frac{1}{p v_{1} \cdots v_{h-2} v_{h-1}^{j}}$, where $j \geq 1$.
III. $\frac{x_{h, N}^{s}}{p v_{1} \cdots v_{h-2} v_{h-1}^{j}}$, where $N \geq 1, x_{h, N}$ is some replacement of $v_{h}^{p^{N}},(p, s)=1$, and $1 \leq j \leq a_{h, N}$ for some $a_{h, N}$ defined by a recursive formula.

For any open invariant ideal $\mathcal{I}_{h-1} \subseteq J \subseteq \mathcal{I}_{h}, H^{0, *}\left(v_{h}^{-1} B P_{\star} / J\right)$ is then generated by the elements above that satisfy $J \subseteq\left(p, v_{1}, \cdots, v_{h-2}, v_{h-1}^{j}\right)$.
$H_{c}^{h^{2}} \bmod \left(p, u_{1}, \cdots, u_{h-2}\right)$

Lemma

$\alpha \in H^{0, *}\left(M_{h-1}^{1}\right)$ corresponds some element in $H^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{t}\left(E_{h}\right) /\left(p, u_{1}, \cdots, u_{h-2}\right)\right)$ iff

$$
|\alpha| \equiv 2 h-t-\frac{p^{N}\left|v_{h}\right|}{p-1} \quad \bmod p^{N}\left|v_{h}\right|
$$

Corollary

Let $t \in \mathbb{Z} . H_{c}^{h^{2}}\left(\mathbb{G}_{h}, \pi_{t}\left(E_{h}\right) /\left(p, u_{1}, \cdots, u_{h-2}\right)\right)$ is zero unless:

- (Family I) $\left|v_{h}\right|$ divides t.
- (Family III) $t=s p^{N}\left|v_{h}\right|-\frac{\left(p^{N}-1\right)\left|v_{h}\right|}{p-1}+(j-1)\left|v_{h-1}\right|$, for some $N \geq 1$ and $1 \leq j \leq a_{h, N}$.

When $h=2, p \geq 5$, we recover Behrens' computation of $H_{c}^{4}\left(\mathbb{G}_{2} ; \pi_{t}\left(E_{2}\right) / p\right)$.

Implications of the MRW computations

When $(p-1)+h$, the above computation yields:

Corollary

- $H_{0}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right) / \mathcal{I}_{h-1}\right)=H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right) / \mathcal{I}_{h-1}\right)=\mathbb{F}_{p}$.
- $H_{0}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right) / \mathcal{I}_{h-1}\right)=H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right) / \mathcal{I}_{h-1}\right)=0$.

When $2 p-1=h^{2}$, the latter measures whether the exotic elements in κ_{h} are detected by the Smith-Toda complex $V(h-2):=S^{0} /\left(p, v_{1}, \cdots, v_{h-2}\right)$. From this we conclude

Theorem (Culver-Z.)
Suppose the Smith-Toda complex $V(h-2)$ exists and $2 p-1=h^{2}$. Then

$$
X \otimes_{K(h)} V(h-2) \simeq L_{K(h)} V(h-2), \text { for any } X \in \kappa_{h} .
$$

In particular, this is true when $(h, p)=(3,5)$ and $(5,13)$.

Greek letter elements mod p

Proposition

As an \mathbb{F}_{p}-vector space, $H^{0, *}\left(M_{1}^{h-1}\right)$ is generated by elements in the following families:
I. $\frac{v_{h}^{s}}{p v_{1} \cdots v_{h-1}}$, where $(s, p)=1$.
II. $\frac{1}{p v_{1}^{d_{1} \ldots v_{h-1}}}$, where $\left(p, v_{1}^{d_{1}}, \cdots, v_{h-1}^{d_{h-1}}\right)$ is an invariant ideal.
III. $\frac{y_{N, h}^{s}}{p v_{1}^{d_{1} \ldots v_{h-1}}}$, where $y_{N, h}$ is some replacement of $v_{h}^{p^{N}},(s, p)=1$ and ($p, v_{1}^{d_{1}}, \cdots, v_{h-1}^{d_{h-1}}, y_{N, h}^{s}$) is an "admissible" sequence.

By analyzing the degrees of elements in Families I and II, we get

- Family I contributes a copy of \mathbb{F}_{p} to $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{t}\left(E_{h}\right) / p\right)$ when $\left|v_{h}\right| \mid t$.
- Family II does not contribute to $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{t}\left(E_{h}\right) / p\right)$ when $t \in \mathbb{Z}$.

Bounds on divisibility

It now remains to study Family III. The precise condition for ($p, v_{1}^{d_{1}}, \cdots, v_{h-1}^{d_{h-1}}, y_{N, h}^{s}$) to be an "admissible" sequence is out of reach when $h \geq 4$. Nevertheless, we have:

Theorem (Culver-Z.)
(1) Family III does not contribute to $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{0}\left(E_{h}\right) / p\right)$ if

$$
\sum_{i=1}^{h-1} d_{i}\left|v_{i}\right|<\frac{p^{N}\left|v_{h}\right|}{p-1}-2 h \text { for all admissible sequences. }
$$

(2) Family III does not contribute to $H_{c}^{h^{2}}\left(\mathbb{G}_{h} ; \pi_{2 p-2}\left(E_{h}\right) / p\right)$ if

$$
\sum_{i=1}^{h-1} d_{i}\left|v_{i}\right|<\frac{p^{N}\left|v_{h}\right|}{p-1}-2 h+2 p-2 \text { for all admissible sequences. }
$$

From the Vanishing Conjecture to $\kappa_{h}=0$

The bounds above suggest RHVC is closely related to the vanishing of κ_{h}, when $2 p-1=h^{2}$. Indeed we have

Theorem (Culver-Z.)
If RHVC holds at height 3 and prime 5 , then $\kappa_{3}=0$ at $p=5$.

Proof.

(1) Suppose $\kappa_{3} \neq 0$ at $p=5$.
(2) Then $H_{c}^{9}\left(\mathbb{G}_{3} ; \pi_{8}\left(E_{3}\right) / 5\right) \neq 0$. There is some non-zero Family III element $[\alpha] \in H_{c}^{0}\left(\mathbb{G}_{3} ;\left(\pi_{8}\left(E_{3}\right) / 5\right)^{\vee}\right)$.
(3) $[\alpha]$ cannot be v_{1}-torsion, since $H_{c}^{9}\left(\mathbb{G}_{3} ; \pi_{8}\left(E_{3}\right) /\left(5, u_{1}\right)\right)=0$.
(9) $v_{1} \cdot[\alpha]$ corresponds to a non-zero element in $H_{c}^{9}\left(\mathbb{G}_{3} ; \pi_{0}\left(E_{3}\right) / 5\right)$.
(9) $H_{c}^{9}\left(\mathbb{G}_{3} ; \pi_{0}\left(E_{3}\right) / 5\right)$ already has a copy of \mathbb{F}_{p} from Family I elements. So $v_{1} \cdot[\alpha]$ contributes another copy to it, which would imply RHVC fails.

Thank you!

