# THE COMPUTATION OF STABLE HOMOTOPY GROUPS: PROBLEMS 

DANIEL C. ISAKSEN

## 1. First Lecture

(1) Let $A$ be an abelian group with a filtration whose associated graded object is a (graded) $\mathbb{F}_{2}$-vector space of dimension $n$. Prove that $A$ has order $2^{n}$.
(2) Let $A$ be an abelian group with a filtration whose associated graded object is a (graded) $\mathbb{F}_{2}$-vector space. Suppose that the associated graded object is zero in filtrations below 1 and above $n$. Prove that $2^{n} \cdot A$ is zero.
(3) Let $A$ be an abelian group with a filtration whose associated graded object is a (graded) $\mathbb{F}_{2}$-vector space. Suppose that the dimensions of $\mathrm{Gr}_{0} A, \operatorname{Gr}_{1} A$, and $\mathrm{Gr}_{2} A$ are 1,1 , and 2 respectively ( $\mathrm{Gr} A$ is zero in all other degrees). Find all possible values of $A$. (See the diagram below.)
(4) The diagram below represents the map $\operatorname{Gr} f: \operatorname{Gr} A \rightarrow \operatorname{Gr} B[1]$ induced by a map $f: A \rightarrow B$ of abelian groups. The solid line indicates a non-zero value of $\operatorname{Gr} f$, while the dashed line indicates a hidden value.

Analyze the map $f$, as in the example in the middle of page 3 of the lecture notes. Give names to elements of $A$ and $B$, and determine the values of $f$ in terms of these names.
[Note: This is an example of a "crossing" value. It complicates analyses of associated graded objects.]

[^0]
(5) The figure below represents the associated graded object of an abelian group $A$. Each dot represents a copy of $\mathbb{F}_{2}$ in $\mathrm{Gr} A$, and vertical lines indicate the effect of multiplication by 2 as a map $\operatorname{Gr} A \rightarrow \operatorname{Gr} A[1]$. What are the possible values of $A$ ?
[Note: This problem is not just interesting in principle. It actually arises in the 45 -stem!

(6) What changes if the two components in the previous diagram are separated by more than one filtration degree?

## 2. Second Lecture

(7) Check that the expression $a_{01} a_{14}+a_{02} a_{24}+a_{03} a_{34}$ in the definition of a fourfold Massey product is a cycle.
(8) Prove that

$$
a_{01}\left\langle a_{12}, a_{23}, a_{34}\right\rangle=\left\langle a_{01}, a_{12}, a_{23}\right\rangle a_{34}
$$

when both brackets are defined.
[Hint: First show that the indeterminacies are the same. Then show that they contain a common element.]
(9) The $E_{1}$-page of the May spectral sequence that converges to $\operatorname{Ext}_{A(2)}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is

$$
\mathbb{F}_{2}\left[h_{01}, h_{12}, h_{23}, h_{02}, h_{13}, h_{03}\right],
$$

with differentials

$$
\begin{aligned}
d h_{02} & =h_{01} h_{12} \\
d h_{13} & =h_{12} h_{23} \\
d h_{03} & =h_{01} h_{13}+h_{02} h_{23}
\end{aligned}
$$

The degrees of the generators are $(0,1),(1,1),(3,1),(2,1),(5,1)$, and $(6,1)$ respectively. Compute the Massey product $\left\langle h_{01}, h_{12}, h_{23}, h_{12}\right\rangle$.
[Note: The resulting non-zero element lies in the May $E_{2}$-page, and it is sometimes called $h_{0}(1)$.]
(10) Make precise the idea that the differential graded algebra of problem (9) is the "universal threefold Massey product that contains zero".
[Hint 1: Characterize maps $E_{1} \rightarrow B$ in terms of the Massey product structure on $B$.]
[Hint 2: Not all differential graded algebras are commutative, but the May $E_{1}$-page is commutative. This limitation has to be accounted for.]
(11) Show that the homology of the differential graded algebra from problem (9) is

$$
\begin{aligned}
& \frac{\mathbb{F}_{2}\left[h_{01}, h_{12}, h_{23}, b_{02}, b_{13}, b_{03}, h_{0}(1)\right]}{h_{01} h_{12}, h_{12} h_{23}, h_{23} b_{02}+h_{01} h_{0}(1), h_{23} h_{0}(1)+h_{01} b_{13}, h_{0}(1)^{2}=b_{02} b_{13}+h_{12}^{2} b_{03}}, \\
& \text { where } b_{i j}=h_{i j}^{2} \text { and } h_{0}(1)=h_{02} h_{13}+h_{12} h_{03} .
\end{aligned}
$$

[Note: This is a hard, or at least lengthy, problem. But if you carry it out, then you are well on your way to computing the homotopy of tmf.]
(12) Using the Moss Convergence Theorem and Adams differentials, find Toda bracket decompositions for the following elements. [Hint: You don't need to worry about the technical conditions of the Moss Convergence Theorem. They don't pertain in these situations.]
(a) $\eta \bar{\kappa}$ detected by $h_{2} f_{0}=h_{1} g$ in the 21-stem.
(b) $\nu \kappa$ detected by $h_{0} e_{0}=h_{2} d_{0}$ in the 17 -stem.
(c) A homotopy element detected by $h_{2}^{2} h_{5}$.
[Note: There are two entirely different solutions to (c).]

## 3. Third lecture

(13) Let $v(n)$ be the 2 -adic valuation of $n$, i.e., $2^{v(n)}$ is the highest power of 2 that divides $n$. Show that

$$
v\left(3^{k}-1\right)=\left\{\begin{array}{lll}
1 & \text { if } \quad v(k)=0 \\
2+v(k) & \text { if } \quad v(k)>0
\end{array}\right.
$$

The goal of this series of problems is to compute the cohomology of $A(1)$, which is the subalgebra of the Steenrod algebra that is generated by $\mathrm{Sq}^{1}$ and $\mathrm{Sq}^{2}$. Equivalently, this is a computation of the May spectral sequence (and Adams spectral sequence) for the homotopy of the real connective $K$-theory spectrum $k o$.

The May $E_{1}$-page consists of $\mathbb{F}_{2}\left[h_{01}, h_{12}, h_{02}\right]$, where $h_{01}, h_{12}$, and $h_{02}$ have degrees $(0,1),(1,1)$, and $(2,1)$ respectively. Moreover, $h_{01}$ and $h_{12}$ have May filtration 0, and $h_{02}$ has May filtration 1. The May $d_{r}$ differential decreases the May filtration by $r$, and it changes bidegrees by $(-1,1)$. (In other words, May differentials point one unit left and one unit up.)
(14) To begin, we need that $d_{1}\left(h_{02}\right)=h_{01} h_{12}$. Using this formula, compute that the $E_{2}$-page is $\mathbb{F}_{2}\left[h_{01}, h_{12}, b_{02}\right] / h_{01} h_{12}$, where $b_{02}=h_{02}^{2}$.
(15) Use the Massey product shuffle $h_{12}\left\langle h_{01}, h_{12}, h_{01}\right\rangle=\left\langle h_{12}, h_{01}, h_{12}\right\rangle h_{01}$ to deduce that $h_{12}^{3}$ must be hit by a differential. Conclude that $d_{2}\left(b_{02}\right)=h_{12}^{3}$.
(16) Compute that the $E_{3}$-page is

$$
\frac{\mathbb{F}_{2}\left[h_{01}, h_{12}, a, b\right]}{h_{01} h_{12}, h_{12}^{3}, h_{12} a, a^{2}+h_{01}^{2} b},
$$

where $a=h_{01} b_{02}$ and $b=b_{02}^{2}$.
(17) Verify that there are no possible higher May differentials.
(18) You have now obtained the $E_{2}$-page of the Adams spectral sequence for $k o$. Verify that there are no possible Adams differentials, so you have obtained the homotopy of $k o$.
(19) Find a threefold Massey product decomposition for $a$. Find a fourfold Massey product decomposition for $b$.

Department of Mathematics, Wayne State University, Detroit, Michigan, USA 48202
Email address: isaksen@wayne.edu


[^0]:    Date: November 2021.

