THE COMPUTATION OF STABLE HOMOTOPY GROUPS: PROBLEMS

DANIEL C. ISAKSEN

1. First lecture

- (1) Let A be an abelian group with a filtration whose associated graded object is a (graded) \mathbb{F}_2 -vector space of dimension n. Prove that A has order 2^n .
- (2) Let A be an abelian group with a filtration whose associated graded object is a (graded) \mathbb{F}_2 -vector space. Suppose that the associated graded object is zero in filtrations below 1 and above n. Prove that $2^n \cdot A$ is zero.
- (3) Let A be an abelian group with a filtration whose associated graded object is a (graded) \mathbb{F}_2 -vector space. Suppose that the dimensions of Gr_0A , Gr_1A , and Gr_2A are 1, 1, and 2 respectively (GrA is zero in all other degrees). Find all possible values of A. (See the diagram below.)

(4) The diagram below represents the map $\operatorname{Gr} f: \operatorname{Gr} A \to \operatorname{Gr} B[1]$ induced by a map $f: A \to B$ of abelian groups. The solid line indicates a non-zero value of $\operatorname{Gr} f$, while the dashed line indicates a hidden value.

Analyze the map f, as in the example in the middle of page 3 of the lecture notes. Give names to elements of A and B, and determine the values of f in terms of these names.

[Note: This is an example of a "crossing" value. It complicates analyses of associated graded objects.]

Date: November 2021.

(5) The figure below represents the associated graded object of an abelian group A. Each dot represents a copy of \mathbb{F}_2 in $\operatorname{Gr} A$, and vertical lines indicate the effect of multiplication by 2 as a map $\operatorname{Gr} A \to \operatorname{Gr} A[1]$. What are the possible values of A?

[Note: This problem is not just interesting in principle. It actually arises in the 45-stem!]

(6) What changes if the two components in the previous diagram are separated by more than one filtration degree?

2. Second Lecture

- (7) Check that the expression $a_{01}a_{14} + a_{02}a_{24} + a_{03}a_{34}$ in the definition of a fourfold Massey product is a cycle.
- (8) Prove that

$$a_{01}\langle a_{12}, a_{23}, a_{34} \rangle = \langle a_{01}, a_{12}, a_{23} \rangle a_{34}$$

when both brackets are defined.

[Hint: First show that the indeterminacies are the same. Then show that they contain a common element.]

(9) The E_1 -page of the May spectral sequence that converges to $\operatorname{Ext}_{A(2)}(\mathbb{F}_2, \mathbb{F}_2)$ is

$$\mathbb{F}_{2}[h_{01}, h_{12}, h_{23}, h_{02}, h_{13}, h_{03}],$$

with differentials

$$dh_{02} = h_{01}h_{12}$$

$$dh_{13} = h_{12}h_{23}$$

$$dh_{03} = h_{01}h_{13} + h_{02}h_{23}$$

The degrees of the generators are (0, 1), (1, 1), (3, 1), (2, 1), (5, 1), and (6, 1) respectively. Compute the Massey product $\langle h_{01}, h_{12}, h_{23}, h_{12} \rangle$.

[Note: The resulting non-zero element lies in the May E_2 -page, and it is sometimes called $h_0(1)$.]

(10) Make precise the idea that the differential graded algebra of problem (9) is the "universal threefold Massey product that contains zero".

[Hint 1: Characterize maps $E_1 \to B$ in terms of the Massey product structure on B.]

[Hint 2: Not all differential graded algebras are commutative, but the May E_1 -page is commutative. This limitation has to be accounted for.]

(11) Show that the homology of the differential graded algebra from problem(9) is

 $\frac{\mathbb{F}_2[h_{01}, h_{12}, h_{23}, b_{02}, b_{13}, b_{03}, h_0(1)]}{h_{01}h_{12}, h_{12}h_{23}, h_{23}b_{02} + h_{01}h_0(1), h_{23}h_0(1) + h_{01}b_{13}, h_0(1)^2 = b_{02}b_{13} + h_{12}^2b_{03}},$

where $b_{ij} = h_{ij}^2$ and $h_0(1) = h_{02}h_{13} + h_{12}h_{03}$.

[Note: This is a hard, or at least lengthy, problem. But if you carry it out, then you are well on your way to computing the homotopy of tmf.]

- (12) Using the Moss Convergence Theorem and Adams differentials, find Toda bracket decompositions for the following elements. [Hint: You don't need to worry about the technical conditions of the Moss Convergence Theorem. They don't pertain in these situations.]
 - (a) $\eta \bar{\kappa}$ detected by $h_2 f_0 = h_1 g$ in the 21-stem.
 - (b) $\nu \kappa$ detected by $h_0 e_0 = h_2 d_0$ in the 17-stem.
 - (c) A homotopy element detected by $h_2^2 h_5$.

[Note: There are two entirely different solutions to (c).]

3. Third lecture

(13) Let v(n) be the 2-adic valuation of n, i.e., $2^{v(n)}$ is the highest power of 2 that divides n. Show that

$$v(3^{k} - 1) = \begin{cases} 1 & \text{if } v(k) = 0\\ 2 + v(k) & \text{if } v(k) > 0 \end{cases}$$

The goal of this series of problems is to compute the cohomology of A(1), which is the subalgebra of the Steenrod algebra that is generated by Sq¹ and Sq². Equivalently, this is a computation of the May spectral sequence (and Adams spectral sequence) for the homotopy of the real connective K-theory spectrum ko. The May E_1 -page consists of $\mathbb{F}_2[h_{01}, h_{12}, h_{02}]$, where h_{01} , h_{12} , and h_{02} have degrees (0, 1), (1, 1), and (2, 1) respectively. Moreover, h_{01} and h_{12} have May filtration 0, and h_{02} has May filtration 1. The May d_r differential decreases the May filtration by r, and it changes bidegrees by (-1, 1). (In other words, May differentials point one unit left and one unit up.)

- (14) To begin, we need that $d_1(h_{02}) = h_{01}h_{12}$. Using this formula, compute that the E_2 -page is $\mathbb{F}_2[h_{01}, h_{12}, b_{02}]/h_{01}h_{12}$, where $b_{02} = h_{02}^2$.
- (15) Use the Massey product shuffle $h_{12}\langle h_{01}, h_{12}, h_{01}\rangle = \langle h_{12}, h_{01}, h_{12}\rangle h_{01}$ to deduce that h_{12}^3 must be hit by a differential. Conclude that $d_2(b_{02}) = h_{12}^3$.
- (16) Compute that the E_3 -page is

$$\frac{\mathbb{F}_2[h_{01}, h_{12}, a, b]}{h_{01}h_{12}, h_{12}^3, h_{12}a, a^2 + h_{01}^2b}$$

where $a = h_{01}b_{02}$ and $b = b_{02}^2$.

- (17) Verify that there are no possible higher May differentials.
- (18) You have now obtained the E_2 -page of the Adams spectral sequence for ko. Verify that there are no possible Adams differentials, so you have obtained the homotopy of ko.
- (19) Find a threefold Massey product decomposition for a. Find a fourfold Massey product decomposition for b.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN, USA 48202 *Email address*: isaksen@wayne.edu