Massey Products
A is a differential graded algebra, (typically not commutative)
<u>Leibniz rule</u> : d(xy) = dx.y + x.dy.
Ex: Cobar complex whose homology is ExtA(FZ, FZ) = Adams Ez-page.
Ex: Er-page of the May spectral sequence, equipped with the May dr differential
Ex: Er-page of the Adams spectral sequence, equipped with the Adams dr differential.
H(A) inherits a product structure. Well-defined because of the Leibniz rule,
Let a_{01}, a_{12}, a_{23} be cycles in $A(da_{i}, i_{1} = 0, \overline{a_{i}}, i_{1} \in H(A))$
such that $\overline{a_{01}} \cdot \overline{a_{12}} = 0$ and $\overline{a_{12}} \cdot \overline{a_{23}} = 0$ ($a_{01}a_{12}$ and $a_{12}a_{23}$ are
ao, aiz azz = 0 for two different reasons.
Choose a_{02} , $a_{13} \in A$ such that $da_{02} = a_{01}a_{12}$, $da_{13} = a_{12}a_{23}$
$\langle \overline{a_{01}}, \overline{a_{12}}, \overline{a_{23}} \rangle = \left\{ \overline{a_{02}a_{23} + a_{01}a_{13}} \right\} (all possible choices of a_{02}, a_{13})$
$\langle \overline{a_{01}}, \overline{a_{12}} \rangle$ is a coset in $H(A)$ because of the choices.
Any two choices differ by a cycle.

The indeterminacy of < and, and, and is an H(A) + H(A) · and
Ex: A = IF2 [ho1, h12, h23, h02, h13, h 03]
d hoe = horhiz has her his
$dh_{13} = h_{12}h_{23}$
dhos = hoshis + hozhizs hos
$\langle h_{02}, h_{12}, h_{23} \rangle = \overline{h_{02}h_{23}} + h_{01}h_{13} = \overline{dh}_{03} = \overline{0}$. $h_{02} h_{13}$
Note; This is the E, page of the May spectral seguence that
converges to $Ext_{A(2)}(F_2, F_2) = E_2 - page of the Adams spectral$
sequence for tmf.
Higher Massey products
$\langle \overline{a_{o_1}}, \overline{a_{12}}, \overline{a_{23}}, \overline{a_{34}} \rangle$ Need: $\overline{a_{o_1}} \overline{a_{12}} = 0$, $\overline{a_{12}} \overline{a_{23}} = 0$, $\overline{a_{23}} \overline{a_{34}} = 0$
a_{02} a_{13} a_{24} $0 \in \langle \overline{a_{01}}, \overline{a_{12}}, \overline{a_{23}} \rangle$
a_{03} a_{14} $D \in \langle \overline{a_{12}}, \overline{a_{28}}, \overline{a_{34}} \rangle$
{ a or any + a ozazy + a ozazy } (Check that this is a cycle)
Note: Higher brackets are similar. Need all subbrackets to vanish.
$\langle \overline{a_{ol}}, \ldots, \overline{a_{n-ijn}} \rangle = \{ \sum_{0 < k < n} a_{0k} a_{kn} \}$
Defn: The May Er-page is IFz [hij (04 icj] with differential dhij = Z hikhkj ickcj
U

Notation: Nearly every author has how his how his a different notation for these elements. how his how	s h3y hys h2y h3s h3s
<u>Slogan</u> : The May E,-page is the universal infinite 1 that contains zero.	Massey product
Algebra of Massey Products	· · · · · · · · · · ·
Massey products satisfy many relations, such as :	· · · · · · · · · · · ·
$0 \in \langle a_{01}, a_{12}, a_{23} \rangle$ if $a_{01} = 0$ or $a_{12} = 0$ or $a_{23} = 0$	
$\langle a_{01} + a_{01}, a_{12}, a_{23} \rangle \subseteq \langle a_{01}, a_{12}, a_{23} \rangle + \langle a_{01}, a_{12}, a_{23} \rangle$	
$(a_{01}, a_{12}, a_{23} + a_{23}) \subseteq (a_{01}, a_{12}, a_{23}) + (a_{01}, a_{12}, a_{23})$	· · · · · · · · · · · ·
$\langle a_{01}, a_{12} + a_{12}, a_{23} \rangle = \langle a_{01}, a_{12}, a_{23} \rangle + \langle a_{01}, a_{12}, a_{23} \rangle$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$a_{01} \langle a_{12}, a_{23}, a_{34} \rangle \in \langle a_{01} a_{12}, a_{23}, a_{34} \rangle$	
$\langle a_{01}, a_{12}, a_{23} \rangle a_{34} \subseteq \langle a_{01}, a_{12}, a_{23} a_{34} \rangle$	Assuming that
$\langle a_{01} a_{12}, a_{23}, a_{34} \rangle \subseteq \langle a_{01}, a_{12} a_{23}, a_{34} \rangle$	all brackets are
$\langle a_{01}, a_{12}, a_{23} a_{34} \rangle \in \langle a_{01}, a_{12} a_{23}, a_{34} \rangle$	a clebined.
$a_{01}\langle a_{12}, a_{23}, a_{34}\rangle = \langle a_{01}, a_{12}, a_{23}\rangle a_{34}$	· · · · · · · · · · ·

Note: There is no known complete list of such relations for higher brackets.
Massey products in Ext
Ext _A (IF ₂ , IF ₂) has Massey products because it is the homology of the cobar complex.
Computations in the cobar complex are difficult, even in low dimensions. (hn) (hn) Thm [Adams]: $h_{n+1,n+2} \times \in \langle h_{n,n+1}, \times, h_{n,n+1} \rangle$ $h_{1}^{2} = \langle h_{0}, h_{1}, h_{0} \rangle$ $E \times i h_{12}^{2} = \langle h_{01}, h_{12}, h_{01} \rangle$ $h_{23} = \langle h_{12}, h_{22}, h_{12} \rangle$ $h_{01}h_{23} = \langle h_{12}, h_{01}, h_{12} \rangle$ $h_{12}h_{34} = \langle h_{23}, h_{12}, h_{23} \rangle$
Use Massey products to deduce May difficultials, and use May differentials to deduce Massey products. May
May Convergence Theorem : A Massey product d & (a, b, c) in H(Er) implies that there is a corresponding Massey product in Ext. (There are some technical conditions that are not always satisfied.)
Ex: <h^2_12, hiz,="" hoy,="" hzz<br="">hz hoz hoz hiz O hoz</h^2_12,>
$h_{12}^{2}h_{03} + h_{12}h_{02}h_{13} = h_{12}(h_{12}h_{03} + h_{02}h_{13}) = h_{12}h_{0}(1) = c_{0}$

Ex: May Ez-page
$b_{02} = h_{02}^2$
$ (D h_{12}^3 = h_{12}h_{12}^2 = h_{12} (h_{01}h_{12}h_{01}) = (h_{12}h_{01}h_{12})h_{01} = h_{01}h_{23}h_{01} = h_{01}h_{01}h_{01} = h_{01}h_{01}h_{01}h_{01} = h_{01}h_{01}h_{01}h_{01} = h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{01}h_{$
(2) Therefore $d_2(b_{02}) = h_{12}^3 + h_{01}^2 h_{23}$
(3) Then $d_z(h_{23}b_{02}) = h_{01}^2h_{23}^2$, so
(f) $d_2(h_0(i)) = h_0 h_{23}^2$
(5) $C_0 = h_{12}h_{12}, h_{01}, h_{23}^2$
Toda brackets in Tix
Toda brackets are another example of rich additional structure.
The name "stable homotopy ring" is an injustice to the depth $+$ intricacy of the structure of π_{*} .
Moss Convergence Theorem : A Massey product in $Ext_A(F_2, F_2)$, or Adams in $H(E_r)$, implies that there is a corresponding. Toda bracket
in The (There are some technical conditions that are not always satisfied.)

•	•	E	<u>×</u> ;	$: c_{o} = \langle h_{1}^{2}, h_{o}, h_{1}, h_{2} \rangle$												$\varepsilon = \langle \gamma, 2, \gamma, \nu \rangle$														•							
•	•	•	•	$c_o = \langle h_1, h_0, h_2^2 \rangle$												$\varepsilon \in \langle \eta, 2, v^2 \rangle = \{\varepsilon, \varepsilon + \eta \sigma \}$															•	•					
	•	•	•	$h_1h_4 = \langle h_1, h_0, h_3^2 \rangle$ in $E_3 = H(E_2)$											•	Ϋ́	, e	. ('n	2		2	, > =	Į,	1 _{ับ}	.h		- - [F	2	7	•						
•	•	•	•	•	•		•	•	•					•	•		•	•		•		τ.	•		, ·		• •	•).	। प			رد	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•	•			•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•	•
•	•	•	•	•	•	•		•			•			•			•	•	•	•			•	•	•	•	•	•	•	•	•	•			•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•			•	•	•			•	•		•			•		•						•	٠	•		•	•	•	•		•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•			•	•			•				•	•					•	•	•			•	•			•	•	•	•		•	•	•			•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•		•	•
•	•	•		•	•	•	•	•	•	•	•	•	•	•			•		•	•		•		•	•	•	•		•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•