# Some chromatic equivariant homotopy theory 

William Balderrama

University of Virginia

February 24, 2022

## First question of the day

## Big problem

Compute the $G$-equivariant stable stems $\pi_{\star} S_{G}$ for $G$ a finite group.
We want to take a chromatic approach.

## The classical story

Chromatic homotopy theory says $S$ is built from "pieces" $S_{K(n)}$.
(1) Nontrivial gluing, coming from the chromatic tower

$$
S_{(p)} \simeq \lim _{n \rightarrow \infty} L_{n} S, \quad L_{n} S=L_{n-1} S \times_{L_{n-1} S_{K(n)}} S_{K(n)}
$$

but already $S \rightarrow S_{K(n)}$ detects a lot.
(2) Have a method for computing: $S_{K(n)}=E_{n}^{\mathrm{h} \mathbb{G}_{n}}$.
(1) Don't have to go all the way: also have approximations $E_{n}^{\mathrm{h} K}$.
(2) Have spectral sequences $H_{c}^{*}\left(K ; \pi_{*} E_{n}\right) \Rightarrow \pi_{*} E_{n}^{\mathrm{h} K}$.

## Question

Is there a " $G$-equivariant $K(n)$-local sphere" giving a similar story?

One possible approach: follow the Segal conjecture

## Definition

Write $b_{G}: \mathcal{S p} \rightarrow \mathcal{S}_{p_{G}}$ for the Borel / cofree functor.
(1) In other notation, $b_{G}(X)=F\left(E G_{+}, i_{*} X\right)$.
(0) Satisfies $\mathscr{S p}_{G}\left(S^{\alpha}, b_{G}(X)\right)=\operatorname{Sp}(\operatorname{Th}(\alpha), X)$ for $\alpha \in R O(G)$.
(- Here, $\operatorname{Th}(\alpha)=\left(S^{\alpha}\right)_{\mathrm{h} G}=$ Thom spectrum of $\alpha$ over $B G$.
(0) In particular, $\pi_{\alpha} b_{G}(X)=X^{0} \operatorname{Th}(\alpha)$.

The Segal conjecture (Carlsson in general; important cases by Lin, Gunawardena, Ravenel, Adams, Miller)
If $G$ is a $p$-group, then $S_{G} \simeq b_{G}(S)$ up to $p$-completion.

## What this tells us

$b_{G}\left(S_{K(n)}\right)$ is a fair candidate for a " $G$-equivariant $K(n)$-local sphere".

Some nice properties of $b_{G}\left(S_{K(n)}\right)$
Good approximations to the sphere
The Segal conjecture says $S_{G} \approx b_{G}(S)$. As $b_{G}$ preserves limits, have

$$
\begin{gathered}
b_{G}\left(S_{(p)}\right) \simeq \lim _{n \rightarrow \infty} b_{G}\left(L_{n} S\right) \\
b_{G}\left(L_{n} S\right)=b_{G}\left(L_{n-1} S\right) \times_{b_{G}\left(L_{n-1} S_{K(n)}\right)} b_{G}\left(S_{K(n)}\right) .
\end{gathered}
$$

So you know from the start that $b_{G}\left(S_{K(n)}\right)$ see a lot of $S_{G}$.
Can compute: coefficients are nonequivariant cohomotopy
(1) Equivalences $b_{G}\left(S_{K(n)}\right)=b_{G}\left(E_{n}\right)^{\mathrm{h} \mathbb{G}_{n}}$;
(2) In general, have $b_{G}\left(E_{n}^{\mathrm{h} K}\right)=b_{G}\left(E_{n}\right)^{\mathrm{h} K}$ and

$$
H_{c}^{*}\left(K ; \pi_{\star} b_{G}\left(E_{n}\right)\right) \Rightarrow \pi_{\star} b_{G}\left(E_{n}^{\mathrm{h} K}\right)
$$

Acts like a finite spectrum
(1) (Hovey, Greenlees, Sadofsky): $\mathcal{S p}\left(\operatorname{Th}(\alpha), S_{K(n)}\right) \simeq L_{K(n)} \operatorname{Th}(-\alpha)$.
(2) Thus $b_{G}\left(S_{K(n)}\right)$ is built from $K(n)$-locally dualizable pieces.

## A more conceptual approach

## Observation

(1) $S_{K(n)}$ pops out of general theory as a Bousfield localization.
(2) By contrast, $b_{G}\left(S_{K(n)}\right)$ was defined "by hand".

## Question

Is there a good $G$-equivariant $K(n)$, say $K(n)_{G}$, leading to $L_{K(n){ }_{G}} S_{G}$ ?

## Answer for $n=1$

Have good $G$-equivariant $K$-theories $K U_{G}$, so $K(1)_{G}:=K U_{G} /(p)$.

## The $G$-equivariant $K(n)$-local sphere

Theorem (special case of the Atiyah-Segal completion theorem)
If $G$ is a $p$-group, then $K U_{G} /(p)=b_{G}(K U /(p))$.
That is, $K(1)_{G}=b_{G}(K(1))$.

## Intuition

If $E_{G}=$ " $K U_{G}$ at height $n$ " (e.g. equiv. elliptic cohomology for $n=2$ ), then expect $E_{G} /\left(p, v_{1}, \ldots, v_{n-1}\right)=b_{G}(K(n))$ for $G$ a $p$-group.

What this intuition leads us to
$b_{G}(K(n))$ is a good choice of $K(n)_{G}$, at least for $G$ a $p$-group.

## Punchline

For any $G$, have $L_{b_{G}(K(n))} S_{G} \simeq b_{G}\left(S_{K(n)}\right)$.
So the manual construction and conceptual approach agree.

## Towards computations

Things to compute
(1) $\pi_{\star} b_{G}\left(E_{n}\right)=E_{n}^{0} \mathrm{Th}(\star)$, including its Morava stabilizer action;
(2) Descent $H^{*}\left(K ; \pi_{\star} b_{G}\left(E_{n}\right)\right) \Rightarrow \pi_{\star} b_{G}\left(E_{n}^{\mathrm{h} K}\right)$.

## Remark: odd primes

If $|G|$ is odd, then nontrivial irreducible orthogonal $G$-representations admit complex structures, so $\pi_{\star} b_{G}\left(E_{n}\right)$ amounts to $E_{n}^{*} B G$.

## Remark: decompletions

(1) Rather than $b_{G}\left(E_{1}\right)$ and $b_{G}\left(E_{1}^{\mathrm{h} C_{2}}\right)$, better is $K U_{G}$ and $K O_{G}$.
(2) Height 2 analogue: $G$-equiv. (TMF + adjectives), where defined.

## A selection of relevant computations

(1) (Karoubi 2002) $\pi_{\star} K U_{G}$ as a group for any $G$.
(2) (Hu-Kriz 2006) More on $\pi_{\star} K U_{A}$ for $A=C_{2}^{n}$.
(3) (Guillou-Hill-Isaksen-Ravenel 2019) $\pi_{\star}\left(k o_{C_{2}}\right)_{2}^{\wedge}$ via Adams SS.
(1) (B. 2021) $\pi_{\star} b_{C_{2}}\left(S_{K(1)}\right)$ as a ring by descent from $\pi_{\star} b_{C_{2}}\left(K U_{2}^{\wedge}\right)$.
(6) (B. 2022) $\pi_{\star} K U_{A}$ and $\pi_{\star} K O_{A}$ with products/transfers/ restrictions/norms/Adams ops for $A \simeq C_{2}^{n}$.
(0) (Bonventre-Guillou-Stapleton forthcoming) $\pi_{0} L_{K U_{G}} S_{G}$ for $G$ an odd $p$-group. Notice: no completion.
(1) (B. forthcoming) $\pi_{\star} b_{C_{2}}(B P R)$ and $\pi_{\star} T M F_{0}(3)_{C_{2}}$ and friends.

Example: $C_{2}$-equivariant real $K$-theory

(1) Coord $(s, c)$ is $\pi_{c+(s-c) \sigma} K O_{C_{2}}$, black dots are $\mathbb{Z}$, orange are $\mathbb{Z} /(2)$.
(2) Blue lines are multiplication by $\rho \in \pi_{-\sigma} S$, the Euler class $S^{0} \rightarrow S^{\sigma}$.
(3) $\eta_{C_{2}}$ is $C_{2}$-Hopf map; relation $\rho^{2} \eta_{C_{2}}=-2 \rho$ encodes $R(2)=\eta$.
(1) Dashed lines are hidden in HFPSS $H^{*}\left(C_{2} ; \pi_{\star} K U_{C_{2}}\right) \Rightarrow \pi_{\star} K O_{C_{2}}$.

## Relation to $\mathbb{R e a l} C_{2}$-equivariant homotopy theory

## Important note

The " $C_{2}$ " in $K U_{C_{2}}$ isn't the $C_{2}$ acting on $K U$.

Theorem (see Guillou-Hill-Isaksen-Ravenel 2019)
Where $\eta_{C_{2}} \in \pi_{\sigma} K O_{C_{2}}$, there is an equivalence $K O_{C_{2}} /\left(\eta_{C_{2}}\right) \simeq K \mathbb{R}$.

## Comments

(1) Thus $K \mathbb{R}$ kills all the best stuff in $S_{C_{2}}$, like Mahowald invariants.
(2) Classically, $K O /\left(\eta_{\mathrm{cl}}\right) \simeq K U$, so $\eta_{\mathrm{cl}}$ nilpotent gives $\langle K U\rangle=\langle K O\rangle$. Now: Bousfield classes $\left\langle K U_{C_{2}}\right\rangle=\left\langle K O_{C_{2}}\right\rangle \subsetneq\langle K \mathbb{R}\rangle \subsetneq\left\langle b_{C_{2}}(K(1))\right\rangle$.

This theorem is fairly generic. For example:

## Theorem (B.)

(1) There is $\xi \in \pi_{\sigma} b_{C_{2}}\left(M U P^{\mathrm{h} C_{2}}\right)$ with $b_{C_{2}}\left(M U P^{\mathrm{h} C_{2}}\right) /(\xi) \simeq M U P \mathbb{R}$.
(2) $\zeta \in \pi_{17 \sigma} T M F_{0}(3)_{C_{2}}$ with $T M F_{0}(3)_{C_{2}} /(\zeta) \simeq\left(T M F_{1}(3) \circlearrowleft C_{2}\right)$.

