Some chromatic equivariant homotopy theory

William Balderrama

University of Virginia

February 24, 2022

First question of the day

Big problem

Compute the G-equivariant stable stems $\pi_{\star}S_G$ for G a finite group.

We want to take a chromatic approach.

The classical story

Chromatic homotopy theory says S is built from "pieces" $S_{K(n)}$.

• Nontrivial gluing, coming from the chromatic tower

$$S_{(p)} \simeq \lim_{n \to \infty} L_n S, \qquad L_n S = L_{n-1} S \times_{L_{n-1} S_{K(n)}} S_{K(n)},$$

but already $S \to S_{K(n)}$ detects a lot.

2 Have a method for computing: $S_{K(n)} = E_n^{h \mathbb{G}_n}$.

- Don't have to go all the way: also have approximations E_n^{hK} .
- **2** Have spectral sequences $H_c^*(K; \pi_*E_n) \Rightarrow \pi_*E_n^{hK}$.

Question

Is there a "G-equivariant K(n)-local sphere" giving a similar story?

One possible approach: follow the Segal conjecture

Definition

Write $b_G \colon \mathfrak{Sp} \to \mathfrak{Sp}_G$ for the Borel / cofree functor.

- In other notation, $b_G(X) = F(EG_+, i_*X)$.
- **2** Satisfies $\text{Sp}_G(S^{\alpha}, b_G(X)) = \text{Sp}(\text{Th}(\alpha), X)$ for $\alpha \in RO(G)$.
- **3** Here, $\operatorname{Th}(\alpha) = (S^{\alpha})_{hG}$ = Thom spectrum of α over BG.
- In particular, $\pi_{\alpha}b_G(X) = X^0 \operatorname{Th}(\alpha)$.

The Segal conjecture (Carlsson in general; important cases by Lin, Gunawardena, Ravenel, Adams, Miller)

If G is a p-group, then $S_G \simeq b_G(S)$ up to p-completion.

What this tells us

 $b_G(S_{K(n)})$ is a fair candidate for a "G-equivariant K(n)-local sphere".

Some nice properties of $b_G(S_{K(n)})$ Good approximations to the sphere The Segal conjecture says $S_G \approx b_G(S)$. As b_G preserves limits, have

$$b_G(S_{(p)}) \simeq \lim_{n \to \infty} b_G(L_n S),$$

$$b_G(L_n S) = b_G(L_{n-1} S) \times_{b_G(L_{n-1} S_{K(n)})} b_G(S_{K(n)})$$

So you know from the start that $b_G(S_{K(n)})$ see a lot of S_G .

Can compute: coefficients are nonequivariant cohomotopy

- Equivalences $b_G(S_{K(n)}) = b_G(E_n)^{h\mathbb{G}_n}$;
- In general, have $b_G(E_n^{hK}) = b_G(E_n)^{hK}$ and 2

$$H_c^*(K; \pi_\star b_G(E_n)) \Rightarrow \pi_\star b_G(E_n^{\mathrm{h}K}).$$

Acts like a finite spectrum

(Hovey, Greenlees, Sadofsky): $\operatorname{Sp}(\operatorname{Th}(\alpha), S_{K(n)}) \simeq L_{K(n)} \operatorname{Th}(-\alpha).$ 2 Thus $b_G(S_{K(n)})$ is built from K(n)-locally dualizable pieces.

William Balderrama (UVA)

A more conceptual approach

Observation

• $S_{K(n)}$ pops out of general theory as a Bousfield localization.

2 By contrast, $b_G(S_{K(n)})$ was defined "by hand".

Question

Is there a good G-equivariant K(n), say $K(n)_G$, leading to $L_{K(n)_G}S_G$?

Answer for n = 1

Have good G-equivariant K-theories KU_G , so $K(1)_G := KU_G/(p)$.

The *G*-equivariant K(n)-local sphere

Theorem (special case of the Atiyah-Segal completion theorem) If G is a p-group, then $KU_G/(p) = b_G(KU/(p))$.

That is, $K(1)_G = b_G(K(1))$.

Intuition

If $E_G = "KU_G$ at height n" (e.g. equiv. elliptic cohomology for n = 2), then expect $E_G/(p, v_1, \ldots, v_{n-1}) = b_G(K(n))$ for G a p-group.

What this intuition leads us to

 $b_G(K(n))$ is a good choice of $K(n)_G$, at least for G a p-group.

Punchline

For any G, have $L_{b_G(K(n))}S_G \simeq b_G(S_{K(n)})$.

So the manual construction and conceptual approach agree.

William Balderrama (UVA) Chromatic equivariant h

Towards computations

Things to compute

• $\pi_{\star}b_G(E_n) = E_n^0 \operatorname{Th}(\star)$, including its Morava stabilizer action;

2 Descent $H^*(K; \pi_* b_G(E_n)) \Rightarrow \pi_* b_G(E_n^{hK}).$

Remark: odd primes

If |G| is odd, then nontrivial irreducible orthogonal *G*-representations admit complex structures, so $\pi_{\star}b_G(E_n)$ amounts to E_n^*BG .

Remark: decompletions

- Rather than $b_G(E_1)$ and $b_G(E_1^{hC_2})$, better is KU_G and KO_G .
- **2** Height 2 analogue: G-equiv. (TMF + adjectives), where defined.

A selection of relevant computations

- (Karoubi 2002) $\pi_{\star}KU_G$ as a group for any G.
- **2** (Hu-Kriz 2006) More on $\pi_{\star}KU_A$ for $A = C_2^n$.
- **③** (Guillou-Hill-Isaksen-Ravenel 2019) $\pi_{\star}(ko_{C_2})_2^{\wedge}$ via Adams SS.
- **(B.** 2021) $\pi_{\star} b_{C_2}(S_{K(1)})$ as a ring by descent from $\pi_{\star} b_{C_2}(KU_2^{\wedge})$.
- (B. 2022) $\pi_{\star}KU_A$ and $\pi_{\star}KO_A$ with products/transfers/ restrictions/norms/Adams ops for $A \simeq C_2^n$.
- (Bonventre-Guillou-Stapleton forthcoming) $\pi_0 L_{KU_G} S_G$ for G an odd p-group. Notice: no completion.
- **(B.** forthcoming) $\pi_{\star}b_{C_2}(BPR)$ and $\pi_{\star}TMF_0(3)_{C_2}$ and friends.

Example: C_2 -equivariant real K-theory

• Coord (s,c) is $\pi_{c+(s-c)\sigma} KO_{C_2}$, black dots are \mathbb{Z} , orange are $\mathbb{Z}/(2)$. Blue lines are multiplication by $\rho \in \pi_{-\sigma}S$, the Euler class $S^0 \to S^{\sigma}$. **3** η_{C_2} is C_2 -Hopf map; relation $\rho^2 \eta_{C_2} = -2\rho$ encodes $R(2) = \eta$. Dashed lines are hidden in HFPSS $H^*(C_2; \pi_\star KU_{C_2}) \Rightarrow \pi_\star KO_{C_2}$.

William Balderrama (UVA)

Relation to Real C_2 -equivariant homotopy theory

Important note

The " C_2 " in KU_{C_2} isn't the C_2 acting on KU.

Theorem (see Guillou-Hill-Isaksen-Ravenel 2019)

Where $\eta_{C_2} \in \pi_{\sigma} KO_{C_2}$, there is an equivalence $KO_{C_2}/(\eta_{C_2}) \simeq K\mathbb{R}$.

Comments

- **9** Thus $K\mathbb{R}$ kills all the best stuff in S_{C_2} , like Mahowald invariants.
- Classically, $KO/(\eta_{cl}) \simeq KU$, so η_{cl} nilpotent gives $\langle KU \rangle = \langle KO \rangle$. Now: Bousfield classes $\langle KU_{C_2} \rangle = \langle KO_{C_2} \rangle \subsetneq \langle K\mathbb{R} \rangle \subsetneq \langle b_{C_2}(K(1)) \rangle$.

This theorem is fairly generic. For example:

Theorem (B.)

- There is $\xi \in \pi_{\sigma} b_{C_2}(MUP^{hC_2})$ with $b_{C_2}(MUP^{hC_2})/(\xi) \simeq MUP\mathbb{R}$.
- **②** $\zeta \in \pi_{17\sigma}TMF_0(3)_{C_2}$ with $TMF_0(3)_{C_2}/(\zeta) \simeq (TMF_1(3) \bigcirc C_2).$