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Classical non-equivariant Ravenel-Wilson

Hopf rings

Definition
A Hopf ring is an object in the category of graded counital
coassociative cocomutative coalgebras.

As such, a Hopf ring consists of
A sequence of abelian groups {Mi}

with a coproduct ϕ(m) =
∑

m′ ⊗ m”

and a multiplication ◦ : Mk ⊗ Mn → Mk+n.
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Classical non-equivariant Ravenel-Wilson

Hopf rings & Ω-spectra

Consider an Ω-spectrum
G = {Gk}.

This represents a generalized cohomology theory with

G∗X ≃ [X ,G∗].

Since GkX is an abelian group, Gk is a H-space.
This H-space structure,

∗ : Gk × Gk → Gk ,

gives rise to a product in homology

∗ : E∗Gk ⊗ E∗Gk → E∗(Gk × Gk ) → E∗Gk .

If E∗(−) has a Künneth isomorphism, E∗(Gk ) is a coalgebra
and E∗G∗ is a Hopf algebra
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Classical non-equivariant Ravenel-Wilson

Hopf rings & Ω-spectra

Suppose G is a ring spectrum.

Then G∗X ≃ [X ,G∗] is a graded ring and the multiplication

GkX × GnX → Gk+nX

has a corresponding multiplication in G∗ :

◦ : Gk × Gn → Gk+n

and applying E∗(−) we have

◦ : E∗Gk ⊗E∗ E∗Gn → E∗Gk+n,

making E∗G∗ a Hopf ring.
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Classical non-equivariant Ravenel-Wilson

Ravenel-Wilson Hopf ring method

Idea (Ravenel-Wilson)
The two products ∗ and ◦ allow for the construction of many elements
from just a few.

Applications (Ravenel-Wilson):
The mod p homology of classical Eilenberg-MacLane spaces

The Hopf ring for complex cobordism

The Morava K -theory of Eilenberg-MacLane spaces
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Classical non-equivariant Ravenel-Wilson

Eilenberg-MacLane Spaces

Consider the Eilenberg-MacLane spectrum for Fp,

HFp = {K (Fp,n)} = {Kn}.

Up to homotopy, HFp is characterized by

Hn(X ;Fp) = [X ,Kn].

H∗(−;Fp) has a Künneth isomorphism so H∗K∗ is a Hopf ring.
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Classical non-equivariant Ravenel-Wilson

Ravenel-Wilson computational tools

Let ∆n denote the topological simplex

∆n = {(t1, t2, · · · , tn) ∈ Rn| − 1 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

The Classical Bar Construction. For a topological monoid A, the
pointed space BA is defined as a quotient

BA =
∐

n

∆n × A×n/ ∼

where the relation ∼ is generated by

(t1, · · · tn, x1, · · · , xn) ∼ (t1, · · · , t̂i , · · · , tn, x1, · · · , x̂i , (xixi+1) · · · , xn)

if ti = ti+1 or xi = ∗,
for i = n, delete the last coordinate if tn = 1 or xn = ∗,
for i = 1, delete the first coordinate if t1 = −1 or x1 = ∗.
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Classical non-equivariant Ravenel-Wilson

Bar Spectral Sequence

The bar construction BA is filtered by

B[t]A ≃ ⨿
t≥n≥0

∆n × An/ ∼ ⊂ BA

with associated graded pieces

B[t]A/B[t−1]A ≃ St ∧ A∧t .

Applying H∗(−) to these filtered spaces gives the bar spectral
sequence with E1-page

E1
t ,∗ = H(St)⊗ H∗(A)⊗t

computing H∗(BA).
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Classical non-equivariant Ravenel-Wilson

Ravenel-Wilson computational tools

The bar spectral sequence has

E2
∗,∗ ≃ TorH∗Km

∗,∗ (Fp,Fp) =⇒ H∗BKm ∼= H∗Km+1.

Useful homological algebra:

TorE [x ](Fp,Fp) ≃ Γ[e1x ]

TorT [x ](Fp,Fp) ≃ E [e1x ]⊗ Γ[ϕx ]
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Classical non-equivariant Ravenel-Wilson

Circle product structure

The cup product is induced by a map

◦ = ◦m,ℓ : Km ∧ Kℓ → Km+ℓ. (1)

The map (1) can be constructed inductively on m.

Assume ◦m,ℓ has been defined,

Replace Km+1 and Km+ℓ+1 with bar constructions

{
∐

n

∆n × K n
m/ ∼} ∧ Kℓ → {

∐
n

∆n × Km+ℓ/ ∼}. (2)

RW Methods & RO(C2)-graded homology 10 / 39



Classical non-equivariant Ravenel-Wilson

Circle product structure

Define

{
∐

n

∆n × K n
m/ ∼} ∧ Kℓ → {

∐
n

∆n × Km+ℓ/ ∼}. (2)

by

{(t , x)} ◦ y = {(t , x ◦ y)} (3)

where t ∈ ∆n, x = (x1, · · · , xn) ∈ Km, and y ∈ Kℓ.

Theorem (Ravenel-Wilson)
The above construction is well defined and gives the cup product
pairing

◦ : BKm ∧ Kℓ → BKm+ℓ.
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Classical non-equivariant Ravenel-Wilson

Theorem (Thomason-Wilson)
The ◦ product factors as

B[t]Km × Kℓ → B[t]Km+ℓ⋂ ⋂
◦ : BKm × Kℓ → BKm+ℓ

and the map

B[t]Km/B[t−1]Km × Kℓ → B[t]Km+ℓ/B[t−1]Km+ℓ

≃ ≃
St ∧ K∧t

m × Kℓ → St ∧ K∧t
m+ℓ

is described inductively as (k1, · · · , kt) ◦ k = (k1 ◦ k , · · · , kt ◦ k).
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Classical non-equivariant Ravenel-Wilson

Theorem (Thomason-Wilson)

Let E r
∗,∗(E∗Km) =⇒ E∗Km+1 be the bar spectral sequence.

Compatible with

◦ : E∗Km+1 ⊗H∗ E∗Kℓ → E∗Km+ℓ+1

is a pairing
E r

t ,∗(E∗Km)⊗H∗ E⋆Kℓ → E r
t ,∗(E∗Km+ℓ)

with d r (x) ◦ y = d r (x ◦ y). For r = 1 this pairing is given by

(k1| · · · |kt) ◦ k =
∑

±(k1 ◦ k ′|k2 ◦ k ′′| · · · |ks ◦ k (t))

where k →
∑

k ′ ⊗ k ′′ ⊗ · · · ⊗ k (t) is the iterated reduced coproduct.
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Classical non-equivariant Ravenel-Wilson

Ravenel-Wilson computational tools

Example

H∗K1
∼= E [e1]⊗ T [α(i)]

TorH∗K1(Fp,Fp) ∼= Γ[e2]⊗ E [e1α(i)]⊗ Γ[ϕα(i)]

⇒ H∗K2
∼= T [γpi (e2)]⊗ E [e1 ◦ α(i)]⊗ T [α(i1) ◦ α(i2)]

Upshot
We can inductively deduce the homology of Eilenberg-MacLane
spaces using standard homological algebra!
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Classical non-equivariant Ravenel-Wilson

Mod p homology of Eilenberg-MacLane Spaces

Let e1 ∈ H1K1, αi ∈ H2iK1, βi ∈ H2iCP∞ i ≥ 0.

The generators are e1, α(i) = αpi β(i) = βpi .

For finite sequences I = (i1, i2, · · · ), 0 ≤ i1 < i2 < · · · ,
J = (j0, j1, · · · ), jk ≥ 0,

define αI = α(i1) ◦ α(i2) ◦ · · · ,

βJ = β◦j0
(0) ◦ β

◦j1
(1) ◦ · · · .

Theorem (Ravenel-Wilson)

H∗K∗ ≃ ⊗I,JE(e1 ◦ αI ◦ βJ)⊗I,J T (αI ◦ βJ)
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Classical non-equivariant Ravenel-Wilson

Mod 2 homology of Eilenberg-Maclane spaces

For finite sequences

I = (i(−1), i0, i1, i2, · · · ), ik ≥ 0

define
(e1α)

I = e
◦i(−1)
1 ◦ α◦i0

(0) ◦ α
◦i1
(1) ◦ · · · .

Theorem (Ravenel-Wilson)

Then
H∗K∗ ≃ ⊗IE [(e1α)

I ]

as an algebra where the tensor product is over all I and the coproduct
follows by Hopf ring properties form the α’s.
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Classical non-equivariant Ravenel-Wilson

Stabilizing, the Steenrod algebra

Homology suspend β(i) to define

ξi ∈ H2(pi−1)H,

Homology suspend α(i) to define

τi ∈ H2pi−1H.

Then

H∗H ≃ E [τ0, τ1, · · · ]⊗ P[ξ1, ξ2, · · · ].
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Classical non-equivariant Ravenel-Wilson

RO(G)-graded homology

G a compact Lie group

V a real representation of G, SV a representation sphere

(Co)homology graded on the real representation ring RO(G)

G = C2

Two irreducible representations Rtriv and Rsign (also denoted σ)

−3−2−1 0 1 2 3 −3−2−1 0 1 2 3

Representation spheres S1 and Sσ

S1 Sσ

H⋆(X ) = HC2
⋆ (X ;F2)
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Classical non-equivariant Ravenel-Wilson

RO(C2)-graded homology of a point

H⋆(pt ,F2) = F2[a,u]⊕
F2[a,u]
(a∞,u∞)

{θ}

where |a| = −σ, |u| = 1 − σ, and |θ| = 2σ − 2.

p

q

ua

θ

p

q

Figure: H⋆(pt ,F2) with axis gradings determined by V ≃ Rp−q ⊕ Rqσ.
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Equivariant Eilenberg-MacLane spaces

C2-Equivariant Eilenberg-MacLane Spaces

The Eilenberg-MacLane spectrum for the C2-constant Mackey functor
F2,

HF2 = {K (F2,V )}V∼=kσ+l = {KV}V∼=kσ+l .

Up to C2-equivariant homotopy, HF2 is characterized by

HV (X ;F2) = [X ,KV ]

naturally for all X.
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Equivariant strategy

Strategy & equivariant computational tools

Give explicit models for

∗ : KV × KV → KV

and
◦ : KV × KW → KV+W

using bar and twisted bar constructions

Investigate RO(C2)-graded (twisted) bar spectral sequences

Recover examples: H⋆Kσ, H⋆K (Z, ρ)

Compute: H⋆K (Z,2σ)
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Equivariant strategy

Strategy & equivariant computational tools

Lemma (Behrens-Wilson)

Suppose X ∈ SpC2 and {bi} is a set of elements of H⋆(X ) such that
(1) {Φe(bi)} is a basis of H∗(X e) and
(2) {ΦC2(bi)} is a basis of H∗(XΦC2),

then H⋆(X ) is free over H⋆ and {bi} is a basis.

Computation strategy:
Use ◦-products to produce elements in H⋆KV

Then use explicit models for

∗ : KV × KV → KV and ◦ : KV × KW → KV+W

to analyze underlying and fixed point maps
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Twisted monoids & the twisted bar construction

Twisted monoids

Definition (Liu)
A C2-space A is a twisted monoid if it is a topological monoid in the
non-equivariant sense with the product satisfying γ(xy) = γ(y)γ(x)
where C2 ≃< γ > .

Twisted bar construction

BσA = ⨿n∆
n × An/ ∼
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The RO(C2)-graded twisted bar spectral sequence

Twisted Bar Spectral Sequence

The twisted bar construction BσA is filtered by

Bσ
t A ≃ ⨿

t≥n≥0
∆n × An/ ∼ ⊂ BσA

with associated graded pieces

Bσ
t A/Bσ

t−1A ≃ S⌈ t
2⌉σ+⌊ t

2⌋ ∧ A∧t

where the C2-action on At is given by

γ(a1 ∧ · · · ∧ an) = (γan ∧ · · · ∧ γa1).

Applying H⋆(−) to these filtered spaces gives the twisted bar spectral
sequence computing H⋆(BσA).
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The RO(C2)-graded twisted bar spectral sequence

Example
H⋆BσK0

∼= H⋆Kσ
∼= H⋆RP∞

tw is a free H⋆-module with a single generator
in each degree ⌈n

2⌉σ + ⌊n
2⌋.

Proof: E1
t ,⋆

∼= H⋆(S⌈ t
2⌉σ+⌊ t

2⌋) ∧ H⋆(F2)
∧t .

p

q

V ≃ Rp−q ⊕ Rqσ

Filtration degree corresponds
to topological degree

d r shifts topological degree
down by one

There are no nonzero d r ,
r > 1

There are no nonzero d1,
otherwise we would be killing
a known generator of
H∗(RP∞)

RW Methods & RO(C2)-graded homology 25 / 39



The RO(C2)-graded twisted bar spectral sequence

Example
H⋆BσK0

∼= H⋆Kσ
∼= H⋆RP∞

tw is a free H⋆-module with a single generator
in each degree ⌈n

2⌉σ + ⌊n
2⌋.

Proof: E1
t ,⋆

∼= H⋆(S⌈ t
2⌉σ+⌊ t

2⌋) ∧ H⋆(F2)
∧t .

p

q

V ≃ Rp−q ⊕ Rqσ

Filtration degree corresponds
to topological degree

d r shifts topological degree
down by one

There are no nonzero d r ,
r > 1

There are no nonzero d1,
otherwise we would be killing
a known generator of
H∗(RP∞)

RW Methods & RO(C2)-graded homology 25 / 39



The RO(C2)-graded twisted bar spectral sequence

Example
H⋆BσK0

∼= H⋆Kσ
∼= H⋆RP∞

tw is a free H⋆-module with a single generator
in each degree ⌈n

2⌉σ + ⌊n
2⌋.

Proof: E1
t ,⋆

∼= H⋆(S⌈ t
2⌉σ+⌊ t

2⌋) ∧ H⋆(F2)
∧t .

p

q

V ≃ Rp−q ⊕ Rqσ

Filtration degree corresponds
to topological degree

d r shifts topological degree
down by one

There are no nonzero d r ,
r > 1

There are no nonzero d1,
otherwise we would be killing
a known generator of
H∗(RP∞)

RW Methods & RO(C2)-graded homology 25 / 39



The RO(C2)-graded twisted bar spectral sequence

Example
H⋆BσK0

∼= H⋆Kσ
∼= H⋆RP∞

tw is a free H⋆-module with a single generator
in each degree ⌈n

2⌉σ + ⌊n
2⌋.

Proof: E1
t ,⋆

∼= H⋆(S⌈ t
2⌉σ+⌊ t

2⌋) ∧ H⋆(F2)
∧t .

p

q

V ≃ Rp−q ⊕ Rqσ

Filtration degree corresponds
to topological degree

d r shifts topological degree
down by one

There are no nonzero d r ,
r > 1

There are no nonzero d1,
otherwise we would be killing
a known generator of
H∗(RP∞)

RW Methods & RO(C2)-graded homology 25 / 39



The RO(C2)-graded twisted bar spectral sequence

The homology of Kσ

H⋆Kσ is an exterior algebra on generators

eσ, ᾱ(i) = ᾱ2i (i ≥ 0),

where
eσ ∈ HσKσ, ᾱi ∈ HρiKσ, (i ≥ 0),

and has coproduct

ψ(eσ) = 1 ⊗ eσ + eσ ⊗ 1 + a(eσ ⊗ eσ)

ψ(ᾱn) =
n∑

i=0

ᾱn−i ⊗ ᾱi +
n−1∑
i=0

u(eσᾱn−1−i ⊗ eσᾱi)

with a ∈ HF2{−σ} and u ∈ HF2{1−σ}.
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The RO(C2)-graded twisted bar spectral sequence

Collapsing twisted bar spectral sequences

Examples

H⋆RP∞
tw = E [eσ, ᾱ(0), ᾱ(1), · · · ] = E [eσ]⊗ Γ[ᾱ(0)], |eσ| = σ, |ᾱ(i)| = 2iρ,

H⋆CP∞
tw = E [β̄(0), β̄(1), · · · ] = Γ[eρ] where |β̄(i)| = 2iρ.

Theorem
We have

H⋆K (Z,2σ) = E [e2σ]⊗ Γ[x̄(0)] where |e2σ| = 2σ, |x̄(0)| = 2ρ.
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The RO(C2)-graded twisted bar spectral sequence

Differentials in the twisted bar spectral sequence

p

q

−1
0
1
2
3
4
5
6
7
8

−− 3−2−1 1 2 3 4 5 6 7 8 9 10 11 12

[xy ]

[x ] ∗ [y ]

d1

[x |y ]
[xy |xy ]
[x |y |xy ]
[y |x |xy ]

d1

[x |y |y |x ]

d1

d2

Twisted bar SS computing H⋆K2σ
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The RO(C2)-graded twisted bar spectral sequence

Fixed points of equivariant Eilenberg-MacLane spaces

Proposition (Caruso)

(Kmσ+n)
C2 ≃ Kn × · · · × Kn+m

Example

(Kσ)
C2 ≃ K0 × K1

Example (Maps to underlying and fixed point homology)

H⋆Kσ
∼= E [eσ, ᾱ(i)]
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RO(C2)-graded homology results

The homology of K∗σ

For finite sequences

J = (jσ, j0, j1, · · · ) jk ≥ 0,

define
(eσᾱ)

J = e◦jσ
σ ◦ ᾱ◦j0

(0) ◦ ᾱ
◦j1
(1) · · ·

Theorem

Then
H⋆K∗σ ∼= ⊗JE [(eσᾱ)

J ]

As an algebra where the tensor product is over all J and the coproduct
follows by properties of the ◦-product from the ᾱ’s.
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Equivariant Thomason-Wilson

Theorem (Equivariant Thomason-Wilson)
The ◦ product factors as

BtKV × KW → BtKV+W⋂ ⋂
◦ : BKV × KW → BKV+W

and the map

Bt KV/Bt−1KV × KW → Bt KV+W/Bt−1KV+W

≃ ≃
St ∧ K∧t

V × KW → St ∧ K∧t
V+W

is described inductively as (k1, · · · , kt) ◦ k = (k1 ◦ k , · · · , kt ◦ k).
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Equivariant Thomason-Wilson

Theorem (Equivariant Thomason-Wilson)

Let E r
∗,⋆(E⋆KV ) =⇒ E⋆KV+σ be the bar spectral sequence

and suppose E r is E⋆−flat for i ≤ r .
Compatible with

◦ : E⋆KV+1 ⊗H⋆ E⋆KW → E⋆KV+W+1

is a pairing
E r

t ,⋆(E⋆KV )⊗H⋆ E⋆KW → E r
t ,⋆(E⋆KV+W )

with d r (x) ◦ y = d r (x ◦ y). For r = 1 this pairing is given by

(k1| · · · |kt) ◦ k =
∑

±(k1 ◦ k ′|k2 ◦ k ′′| · · · |ks ◦ k (t))

where k →
∑

k ′ ⊗ k ′′ ⊗ · · · ⊗ k (t) is the iterated reduced coproduct.
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RO(C2)-graded homology results

The homology of Kρ

Let
β̄i ∈ HρiK (Z, ρ), (i ≥ 0).

This gives additional generators,

β̄(i) = β̄2i (i ≥ 0),

of H⋆Kρ with coproduct

ψ(β̄n) =
n∑

i=0

β̄n−i ⊗ β̄i .

Theorem
We have

H⋆Kρ
∼= E [e1 ◦ ᾱ(i), α(i1) ◦ ᾱ(i2), β̄(i)]

where i1 < i2 and the coproduct follows by properties of the ◦-product
from the ᾱ(i)’s and β̄(i)’s.
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RO(C2)-graded homology results

Notation for the homology of Kσ+∗

Then for finite sequences

I = (i1, i2, · · · , ik ), 0 ≤ i1 < i2 < · · · ,

W = (w1,w2, · · · ,wq), 0 ≤ w1 < w2 < · · · ,

J = (j−1, j0, j1, · · · , jℓ), where j−1 ∈ {0,1} and all other jn ≥ 0,

and

Y = (y−1, y0, y1, · · · , yr ), where y−1 ∈ {0,1} and all other yn ≥ 0,

define

(e1αβ)
I,J = e◦j−1

1 ◦ α(i1) ◦ α(i2) ◦ · · · ◦ α(ik ) ◦ β
◦j0
(0) ◦ β

◦j1
(1) ◦ · · · ◦ β

◦jℓ
(ℓ),

(e1αβ)
W ,Y = e◦y−1

1 ◦ α(w1) ◦ α(w2) ◦ · · · ◦ α(wq) ◦ β
◦y0
(0) ◦ β

◦y1
(1) ◦ · · · ◦ β

◦jr
(r),

|I| = k , |W | = q ||J|| = Σjn, and ||Y || = Σyn.
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RO(C2)-graded homology results

The homology of Kσ+∗

Theorem
Then, we have

H⋆Kσ+i
∼= E [(e1αβ)

I,J ◦ ᾱ(m), (e1αβ)
W ,Y ◦ β̄(t)]

where m > ik and m ≥ ℓ, t > wq and t ≥ yr , |I|+ 2||J|| = i and
|W |+ 2||Y || = i − 1, and the coproduct follows by Hopf ring properties
from the α(i)’s, β(i)’s, ᾱ(i)’s and β̄(i)’s.
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RO(C2)-graded homology results

The homology of K2σ+1

Example

K2σ+1 K e
2σ+1 ≃ K3 K C2

2σ+1 ≃ K1 × K2 × K3

H⋆K2σ+1 is exterior on generators

e1 ◦ eσ ◦ eσ, β̄(j1) ◦ ᾱ(j2), e1 ◦ ᾱ(j1) ◦ ᾱ(j2),

e1 ◦ e1 ◦ e1 a(j1) ◦ a(j2) e1α(j1) ◦ α(j2)
e1 ◦ e1 ◦ e1 a(j1) ◦ a(j2) e1α(j1) ◦ α(j2)
e1 ◦ e1 ◦ e1 a(j1) ◦ a(j2) e1α(j1) ◦ α(j2)
ϕ(k)(eσ ◦ eσ), α(i1) ◦ ᾱ(i2) ◦ ᾱ(j3).
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RO(C2)-graded homology results

The homology of K2σ+i , i≥2

K2σ+i K e
2σ+i ≃ K2+i K C2

2σ+i ≃ Ki × Ki+1 × Ki+2

Theorem
The homology H⋆K2σ+i where i ≥ 2 is exterior on generators

H∗Ki−2 ◦ β̄(j1) ◦ β̄(j1), H∗Ki−1 ◦ β̄(j1) ◦ ᾱ(j2), H∗Ki ◦ e1 ◦ ᾱ(j1) ◦ ᾱ(j2),

e1 ◦ e1 ◦ e1 a(j1) ◦ a(j2) e1α(j1) ◦ α(j2)
e1 ◦ e1 ◦ e1 a(j1) ◦ a(j2) e1α(j1) ◦ α(j2)
e1 ◦ e1 ◦ e1 a(j1) ◦ a(j2) e1α(j1) ◦ α(j2)

H∗Ki−1 ◦ ϕ(k)(eσ ◦ eσ), α(i1) ◦ ᾱ(i2) ◦ ᾱ(j3).
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RO(C2)-graded homology results

The homology of KV where 2σ + 1 ⊂ V

Theorem
The RO(C2)-graded homology of KV , 2σ + 1 ⊂ V , is exterior on
generators given by the cycles on the E2-page of the RO(C2)-graded
spectral sequence. Equivalently, RO(C2)-graded bar spectral
sequences computing H⋆KV collapse on the E2-page.

Proof idea.
Use Hopf ring structure on E r -page to eliminate nontrivial
differentials

RW Methods & RO(C2)-graded homology 38 / 39



RO(C2)-graded homology results

Future directions

Stably,

H⋆H ≃ H⋆[τ0, τ1, τ2, · · · , ξ1, ξ2, · · · ]/(τ2
i = (u + aτ0)ξi+1 + aτi+1).

What does an arbitrary element in H⋆KV stabilize to in the the
C2-equivariant dual Steenrod algebra?
How does the stable relation τ2

i = (u + aτ0)ξi+1 + aτi+1 arise
unstably?

• Equivariant analogues of Ravenel-Wilson computations

• Algebra of twisted spectral sequences

•RO(C2)-graded bicommutative Hopf rings, C2-Brown-Gitler Spectra,
and Dieudonne theory
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