Ravenel-Wilson Hopf Ring Methods in C_{2}-equivariant Homotopy Theory and the $H \underline{F}_{2}$-homology of C_{2}-equivariant
 Eilenberg-MacLane spaces

Sarah Petersen

eCHT Research Seminar
August 25, 2022

Hopf rings

Definition

A Hopf ring is an object in the category of graded counital coassociative cocomutative coalgebras.

As such, a Hopf ring consists of

- A sequence of abelian groups $\left\{M_{i}\right\}$
- with a coproduct $\phi(m)=\sum m^{\prime} \otimes m^{\prime \prime}$
- and a multiplication $\circ: M_{k} \otimes M_{n} \rightarrow M_{k+n}$.

Hopf rings \& Ω-spectra

Consider an Ω-spectrum

$$
G=\left\{G_{k}\right\} .
$$

This represents a generalized cohomology theory with

$$
G^{*} X \simeq\left[X, G_{*}\right] .
$$

Since $G^{k} X$ is an abelian group, G_{k} is a H-space.
This H -space structure,

$$
*: G_{k} \times G_{k} \rightarrow G_{k},
$$

gives rise to a product in homology

$$
: E_{} G_{k} \otimes E_{*} G_{k} \rightarrow E_{*}\left(G_{k} \times G_{k}\right) \rightarrow E_{*} G_{k}
$$

If $E_{*}(-)$ has a Künneth isomorphism, $E_{*}\left(G_{k}\right)$ is a coalgebra and $E_{*} G_{*}$ is a Hopf algebra

Hopf rings \& Ω-spectra

Suppose G is a ring spectrum.
Then $G^{*} X \simeq\left[X, G_{*}\right]$ is a graded ring and the multiplication

$$
G^{k} X \times G^{n} X \rightarrow G^{k+n} X
$$

has a corresponding multiplication in G_{*} :

$$
\circ: G_{k} \times G_{n} \rightarrow G_{k+n}
$$

and applying $E_{*}(-)$ we have

$$
\circ: E_{*} G_{k} \otimes_{E_{*}} E_{*} G_{n} \rightarrow E_{*} G_{k+n}
$$

making $E_{*} G_{*}$ a Hopf ring.

Ravenel-Wilson Hopf ring method

Idea (Ravenel-Wilson)

The two products * and \circ allow for the construction of many elements from just a few.

Applications (Ravenel-Wilson):

- The mod p homology of classical Eilenberg-MacLane spaces
- The Hopf ring for complex cobordism
- The Morava K-theory of Eilenberg-MacLane spaces

Eilenberg-MacLane Spaces

Consider the Eilenberg-MacLane spectrum for \mathbb{F}_{p},

$$
H \mathbb{F}_{p}=\left\{K\left(\mathbb{F}_{p}, n\right)\right\}=\left\{K_{n}\right\} .
$$

Up to homotopy, $H \mathbb{F}_{p}$ is characterized by

$$
H^{n}\left(X ; \mathbb{F}_{p}\right)=\left[X, K_{n}\right] .
$$

$H_{*}\left(-; \mathbb{F}_{p}\right)$ has a Künneth isomorphism so $H_{*} K_{*}$ is a Hopf ring.

Ravenel-Wilson computational tools

Let Δ^{n} denote the topological simplex

$$
\Delta^{n}=\left\{\left(t_{1}, t_{2}, \cdots, t_{n}\right) \in \mathbb{R}^{n} \mid-1 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\}
$$

The Classical Bar Construction. For a topological monoid A, the pointed space $B A$ is defined as a quotient

$$
B A=\coprod_{n} \Delta^{n} \times A^{\times n} / \sim
$$

Bar Spectral Sequence

The bar construction $B A$ is filtered by

$$
B^{[t]} A \simeq \underset{t \geq n \geq 0}{\amalg} \Delta^{n} \times A^{n} / \sim \quad \subset B A
$$

with associated graded pieces

$$
B^{[t]} A / B^{[t-1]} A \simeq S^{t} \wedge A^{\wedge t} .
$$

Applying $H_{*}(-)$ to these filtered spaces gives the bar spectral sequence with E^{1}-page

$$
E_{t, *}^{1}=H\left(S^{t}\right) \otimes H_{*}(A)^{\otimes t}
$$

computing $H_{*}(B A)$.

Ravenel-Wilson computational tools

The bar spectral sequence has

$$
E_{*, *}^{2} \simeq \operatorname{Tor}_{*, *}^{H_{*} K_{m}}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \Longrightarrow H_{*} B K_{m} \cong H_{*} K_{m+1}
$$

Useful homological algebra:

$$
\begin{gathered}
\operatorname{Tor}{ }^{E[x]}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \simeq \Gamma\left[e_{1} x\right] \\
\operatorname{Tor}^{T[x]}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \simeq E\left[e_{1} x\right] \otimes \Gamma[\phi x]
\end{gathered}
$$

Circle product structure

The cup product is induced by a map

$$
\begin{equation*}
\circ=\circ_{m, \ell}: K_{m} \wedge K_{\ell} \rightarrow K_{m+\ell} \tag{1}
\end{equation*}
$$

The map (1) can be constructed inductively on m.
Assume $\circ_{m, \ell}$ has been defined,
Replace K_{m+1} and $K_{m+\ell+1}$ with bar constructions

$$
\begin{equation*}
\left\{\coprod_{n} \Delta^{n} \times K_{m}^{n} / \sim\right\} \wedge K_{\ell} \rightarrow\left\{\coprod_{n} \Delta^{n} \times K_{m+\ell} / \sim\right\} \tag{2}
\end{equation*}
$$

Circle product structure

Define

$$
\begin{equation*}
\left\{\coprod_{n} \Delta^{n} \times K_{m}^{n} / \sim\right\} \wedge K_{\ell} \rightarrow\left\{\coprod_{n} \Delta^{n} \times K_{m+\ell} / \sim\right\} \tag{2}
\end{equation*}
$$

by

$$
\begin{equation*}
\{(t, x)\} \circ y=\{(t, x \circ y)\} \tag{3}
\end{equation*}
$$

where $t \in \Delta^{n}, x=\left(x_{1}, \cdots, x_{n}\right) \in K_{m}$, and $y \in K_{\ell}$.
Theorem (Ravenel-Wilson)
The above construction is well defined and gives the cup product pairing

$$
\circ: B K_{m} \wedge K_{\ell} \rightarrow B K_{m+\ell}
$$

Theorem (Thomason-Wilson)

The \circ product factors as

$$
\begin{gathered}
B^{[t]} K_{m} \times K_{\ell} \rightarrow B^{[t]} K_{m+\ell} \\
\bigcap_{0}: B K_{m} \times K_{\ell} \rightarrow B K_{m+\ell}
\end{gathered}
$$

and the map

$$
\begin{aligned}
B^{[t]} K_{m} / B^{[t-1]} K_{m} \times K_{\ell} & \rightarrow B^{[t]} K_{m+\ell} / B^{[t-1]} K_{m+\ell} \\
S^{t} \wedge K_{m}^{\wedge t} \times K_{\ell} & \rightarrow S^{t} \wedge K_{m+\ell}^{\wedge t}
\end{aligned}
$$

is described inductively as $\left(k_{1}, \cdots, k_{t}\right) \circ k=\left(k_{1} \circ k, \cdots, k_{t} \circ k\right)$.

Theorem (Thomason-Wilson)

Let $E_{*, *}^{r}\left(E_{*} K_{m}\right) \Longrightarrow E_{*} K_{m+1}$ be the bar spectral sequence. Compatible with

$$
\circ: E_{*} K_{m+1} \otimes_{H_{*}} E_{*} K_{\ell} \rightarrow E_{*} K_{m+\ell+1}
$$

is a pairing

$$
E_{t, *}^{r}\left(E_{*} K_{m}\right) \otimes_{H_{*}} E_{\star} K_{\ell} \rightarrow E_{t, *}^{r}\left(E_{*} K_{m+\ell}\right)
$$

with $d^{r}(x) \circ y=d^{r}(x \circ y)$. For $r=1$ this pairing is given by

$$
\left(k_{1}|\cdots| k_{t}\right) \circ k=\sum \pm\left(k_{1} \circ k^{\prime}\left|k_{2} \circ k^{\prime \prime}\right| \cdots \mid k_{s} \circ k^{(t)}\right)
$$

where $k \rightarrow \sum k^{\prime} \otimes k^{\prime \prime} \otimes \cdots \otimes k^{(t)}$ is the iterated reduced coproduct.

Ravenel-Wilson computational tools

Example

$$
\begin{gathered}
H_{*} K_{1} \cong E\left[e_{1}\right] \otimes T\left[\alpha_{(i)}\right] \\
\operatorname{Tor}^{H_{*} K_{1}}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \cong \Gamma\left[e_{2}\right] \otimes E\left[e_{1} \alpha_{(i)}\right] \otimes \Gamma\left[\phi \alpha_{(i)}\right] \\
\Rightarrow H_{*} K_{2} \cong T\left[\gamma_{p^{i}}\left(e_{2}\right)\right] \otimes E\left[e_{1} \circ \alpha_{(i)}\right] \otimes T\left[\alpha_{\left(i_{1}\right)} \circ \alpha_{\left(i_{2}\right)}\right]
\end{gathered}
$$

Upshot
We can inductively deduce the homology of Eilenberg-MacLane spaces using standard homological algebra!

Mod p homology of Eilenberg-MacLane Spaces

Let $\quad e_{1} \in H_{1} K_{1}, \quad \alpha_{i} \in H_{2 i} K_{1}, \quad \beta_{i} \in H_{2 i} \mathbb{C} P^{\infty} \quad i \geq 0$.

The generators are
e_{1},
$\alpha_{(i)}=\alpha_{p^{i}}$
$\beta_{(i)}=\beta_{p^{i}}$.

For finite sequences

$$
\begin{array}{rr}
I=\left(i_{1}, i_{2}, \cdots\right), & 0 \leq i_{1}<i_{2}<\cdots, \\
J=\left(j_{0}, j_{1}, \cdots\right), & j_{k} \geq 0,
\end{array}
$$

define

$$
\begin{aligned}
& \alpha_{I}=\alpha_{\left(i_{1}\right)} \circ \alpha_{\left(i_{2}\right)} \circ \cdots, \\
& \beta^{J}=\beta_{(0)}^{\circ j_{0}} \circ \beta_{(1)}^{\circ j_{1}} \circ \cdots .
\end{aligned}
$$

Theorem (Ravenel-Wilson)

$$
H_{*} K_{*} \simeq \otimes_{l, J} E\left(e_{1} \circ \alpha_{l} \circ \beta^{J}\right) \otimes_{l, J} T\left(\alpha_{l} \circ \beta^{J}\right)
$$

Mod 2 homology of Eilenberg-Maclane spaces

For finite sequences

$$
I=\left(i_{(-1)}, i_{0}, i_{1}, i_{2}, \cdots\right), \quad i_{k} \geq 0
$$

define

$$
\left(e_{1} \alpha\right)^{\prime}=e_{1}^{\circ i_{(-1)}} \circ \alpha_{(0)}^{\circ i_{0}} \circ \alpha_{(1)}^{\circ i_{1}} \circ \cdots .
$$

Theorem (Ravenel-Wilson)
Then

$$
H_{*} K_{*} \simeq \otimes_{1} E\left[\left(e_{1} \alpha\right)^{\prime}\right]
$$

as an algebra where the tensor product is over all I and the coproduct follows by Hopf ring properties form the α 's.

Stabilizing, the Steenrod algebra

Homology suspend $\beta_{(i)}$ to define

$$
\xi_{i} \in H_{2\left(p^{i}-1\right)} H,
$$

Homology suspend $\alpha_{(i)}$ to define

$$
\tau_{i} \in H_{2 p^{i}-1} H
$$

Then

$$
H_{*} H \simeq E\left[\tau_{0}, \tau_{1}, \cdots\right] \otimes P\left[\xi_{1}, \xi_{2}, \cdots\right]
$$

$R O(G)$-graded homology

G a compact Lie group

- V a real representation of G, S^{V} a representation sphere
- (Co)homology graded on the real representation ring $R O(G)$
$G=C_{2}$
- Two irreducible representations $\mathbb{R}_{\text {triv }}$ and $\mathbb{R}_{\text {sign }}$ (also denoted σ)

- Representation spheres S^{1} and S^{σ}

- $H_{*}(X)=H_{*}^{C_{2}}\left(X ; \mathbb{F}_{2}\right)$

$R O\left(C_{2}\right)$-graded homology of a point

$$
H_{\star}\left(p t, \mathbb{F}_{2}\right)=\mathbb{F}_{2}[a, u] \oplus \frac{\mathbb{F}_{2}[a, u]}{\left(a^{\infty}, u^{\infty}\right)}\{\theta\}
$$

where $|a|=-\sigma,|u|=1-\sigma$, and $|\theta|=2 \sigma-2$.

Figure: $H_{\star}\left(p t, \mathbb{F}_{2}\right)$ with axis gradings determined by $V \simeq \mathbb{R}^{p-q} \oplus \mathbb{R}^{q \sigma}$.

C_{2}-Equivariant Eilenberg-MacLane Spaces

The Eilenberg-MacLane spectrum for the C_{2}-constant Mackey functor \mathbb{F}_{2},

$$
H \underline{\mathbb{F}}_{2}=\left\{K\left(\underline{\mathbb{F}}_{2}, V\right)\right\}_{V \cong k \sigma+I}=\left\{K_{V}\right\}_{V \cong k \sigma+l} .
$$

Up to C_{2}-equivariant homotopy, $H \mathbb{E}_{2}$ is characterized by

$$
H^{V}\left(X ; \mathbb{F}_{2}\right)=\left[X, K_{V}\right]
$$

naturally for all X .

Strategy \& equivariant computational tools

- Give explicit models for

$$
*: K_{V} \times K_{V} \rightarrow K_{V}
$$

and

$$
\circ: K_{V} \times K_{W} \rightarrow K_{V+W}
$$

using bar and twisted bar constructions

- Investigate $R O\left(C_{2}\right)$-graded (twisted) bar spectral sequences
- Recover examples: $H_{\star} K_{\sigma}, H_{\star} K(\underline{Z}, \rho)$
- Compute: $H_{\star} K(\underline{\mathbb{Z}}, 2 \sigma)$

Strategy \& equivariant computational tools

Lemma (Behrens-Wilson)

Suppose $X \in S p^{C_{2}}$ and $\left\{b_{i}\right\}$ is a set of elements of $H_{\star}(X)$ such that
(1) $\left\{\Phi^{e}\left(b_{i}\right)\right\}$ is a basis of $H_{*}\left(X^{e}\right)$ and
(2) $\left\{\Phi^{C_{2}}\left(b_{i}\right)\right\}$ is a basis of $H_{*}\left(X^{\Phi C_{2}}\right)$,
then $H_{\star}(X)$ is free over H_{\star} and $\left\{b_{i}\right\}$ is a basis.
Computation strategy:

- Use o-products to produce elements in $H_{\star} K_{V}$
- Then use explicit models for

$$
*: K_{V} \times K_{V} \rightarrow K_{V} \quad \text { and } \quad \circ: K_{V} \times K_{W} \rightarrow K_{V+w}
$$

to analyze underlying and fixed point maps

Twisted monoids

Definition (Liu)
A C_{2}-space A is a twisted monoid if it is a topological monoid in the non-equivariant sense with the product satisfying $\gamma(x y)=\gamma(y) \gamma(x)$ where $\boldsymbol{C}_{2} \simeq\langle\gamma\rangle$.

Twisted bar construction

$$
B^{\sigma} A=\amalg_{n} \Delta^{n} \times A^{n} / \sim
$$

Twisted Bar Spectral Sequence

The twisted bar construction $B^{\sigma} A$ is filtered by

$$
B_{t}^{\sigma} A \simeq \amalg_{t \geq n \geq 0} \Delta^{n} \times A^{n} / \sim \quad \subset B^{\sigma} A
$$

with associated graded pieces

$$
B_{t}^{\sigma} A / B_{t-1}^{\sigma} A \simeq S^{\left\lceil\frac{t}{2}\right\rceil \sigma+\left\lfloor\frac{t}{2}\right\rfloor} \wedge A^{\wedge t}
$$

where the C_{2}-action on A^{t} is given by

$$
\gamma\left(a_{1} \wedge \cdots \wedge a_{n}\right)=\left(\gamma a_{n} \wedge \cdots \wedge \gamma a_{1}\right)
$$

Applying $H_{\star}(-)$ to these filtered spaces gives the twisted bar spectral sequence computing $H_{\star}\left(B^{\sigma} A\right)$.

Example

$H_{\star} B^{\sigma} K_{0} \cong H_{\star} K_{\sigma} \cong H_{\star} \mathbb{R} P_{t w}^{\infty}$ is a free H_{\star}-module with a single generator in each degree $\left\lceil\frac{n}{2}\right\rceil \sigma+\left\lfloor\frac{n}{2}\right\rfloor$.
Proof: $E_{t, \star}^{1} \cong H_{\star}\left(S^{\left\lceil\frac{t}{2}\right\rceil \sigma+\left\lfloor\frac{t}{2}\right\rfloor}\right) \wedge H_{\star}\left(\mathbb{F}_{2}\right)^{\wedge t}$.

- Filtration degree corresponds to topological degree

Example

$H_{\star} B^{\sigma} K_{0} \cong H_{\star} K_{\sigma} \cong H_{\star} \mathbb{R} P_{t w}^{\infty}$ is a free H_{\star}-module with a single generator in each degree $\left\lceil\frac{n}{2}\right\rceil \sigma+\left\lfloor\frac{n}{2}\right\rfloor$.

$$
\text { Proof: } E_{t, \star}^{1} \cong H_{\star}\left(S^{\left\lceil\frac{t}{2}\right\rceil \sigma+\left\lfloor\frac{t}{2}\right\rfloor}\right) \wedge H_{\star}\left(\mathbb{F}_{2}\right)^{\wedge t}
$$

- Filtration degree corresponds to topological degree
- d^{r} shifts topological degree down by one

Example

$H_{\star} B^{\sigma} K_{0} \cong H_{\star} K_{\sigma} \cong H_{\star} \mathbb{R} P_{t w}^{\infty}$ is a free H_{\star}-module with a single generator in each degree $\left\lceil\frac{n}{2}\right\rceil \sigma+\left\lfloor\frac{n}{2}\right\rfloor$.

$$
\text { Proof: } E_{t, \star}^{1} \cong H_{\star}\left(S^{\left\lceil\frac{t}{2}\right\rceil \sigma+\left\lfloor\frac{t}{2}\right\rfloor}\right) \wedge H_{\star}\left(\mathbb{F}_{2}\right)^{\wedge t}
$$

- Filtration degree corresponds to topological degree
- d^{r} shifts topological degree down by one
- There are no nonzero d^{r}, $r>1$

Example

$H_{\star} B^{\sigma} K_{0} \cong H_{\star} K_{\sigma} \cong H_{\star} \mathbb{R} P_{t w}^{\infty}$ is a free H_{\star}-module with a single generator in each degree $\left\lceil\frac{n}{2}\right\rceil \sigma+\left\lfloor\frac{n}{2}\right\rfloor$.

$$
\text { Proof: } E_{t, \star}^{1} \cong H_{\star}\left(S^{\left\lceil\frac{t}{2}\right\rceil \sigma+\left\lfloor\frac{t}{2}\right\rfloor}\right) \wedge H_{\star}\left(\mathbb{F}_{2}\right)^{\wedge t}
$$

- Filtration degree corresponds to topological degree
- d^{r} shifts topological degree down by one
- There are no nonzero d^{r}, $r>1$
- There are no nonzero d^{1}, otherwise we would be killing a known generator of $H_{*}\left(\mathbb{R} P^{\infty}\right)$

The homology of K_{σ}

$H_{\star} K_{\sigma}$ is an exterior algebra on generators

$$
e_{\sigma}, \quad \bar{\alpha}_{(i)}=\bar{\alpha}_{2^{i}} \quad(i \geq 0)
$$

where

$$
e_{\sigma} \in H_{\sigma} K_{\sigma}, \quad \bar{\alpha}_{i} \in H_{\rho i} K_{\sigma}, \quad(i \geq 0)
$$

and has coproduct

$$
\begin{aligned}
& \psi\left(\boldsymbol{e}_{\sigma}\right)=1 \otimes \boldsymbol{e}_{\sigma}+\boldsymbol{e}_{\sigma} \otimes 1+\boldsymbol{a}\left(\boldsymbol{e}_{\sigma} \otimes \boldsymbol{e}_{\sigma}\right) \\
& \psi\left(\bar{\alpha}_{n}\right)=\sum_{i=0}^{n} \bar{\alpha}_{n-i} \otimes \bar{\alpha}_{i}+\sum_{i=0}^{n-1} u\left(\boldsymbol{e}_{\sigma} \bar{\alpha}_{n-1-i} \otimes \boldsymbol{e}_{\sigma} \bar{\alpha}_{i}\right)
\end{aligned}
$$

with $a \in H \mathbb{F}_{2\{-\sigma\}}$ and $u \in H \mathbb{F}_{2\{1-\sigma\}}$.

Collapsing twisted bar spectral sequences

Examples

$H_{\star} \mathbb{R} P_{t w}^{\infty}=E\left[e_{\sigma}, \bar{\alpha}_{(0)}, \bar{\alpha}_{(1)}, \cdots\right]=E\left[e_{\sigma}\right] \otimes \Gamma\left[\bar{\alpha}_{(0)}\right],\left|e_{\sigma}\right|=\sigma,\left|\bar{\alpha}_{(i)}\right|=2^{i} \rho$,
$H_{\star} \mathbb{C} P_{t w}^{\infty}=E\left[\bar{\beta}_{(0)}, \bar{\beta}_{(1)}, \cdots\right]=\Gamma\left[e_{\rho}\right]$ where $\left|\bar{\beta}_{(i)}\right|=2^{i} \rho$.

Theorem
We have

$$
H_{\star} K(\underline{\mathbb{Z}}, 2 \sigma)=E\left[e_{2 \sigma}\right] \otimes \Gamma\left[\bar{x}_{(0)}\right] \text { where }\left|e_{2 \sigma}\right|=2 \sigma,\left|\bar{x}_{(0)}\right|=2 \rho .
$$

Differentials in the twisted bar spectral sequence

Twisted bar SS computing $H_{\star} K_{2 \sigma}$

Fixed points of equivariant Eilenberg-MacLane spaces

Proposition (Caruso)

$$
\left(K_{m \sigma+n}\right)^{C_{2}} \simeq K_{n} \times \cdots \times K_{n+m}
$$

Example

$$
\left(K_{\sigma}\right)^{C_{2}} \simeq K_{0} \times K_{1}
$$

Fixed points of equivariant Eilenberg-MacLane spaces

Proposition (Caruso)

$$
\left(K_{m \sigma+n}\right)^{C_{2}} \simeq K_{n} \times \cdots \times K_{n+m}
$$

Example

$$
\left(K_{\sigma}\right)^{C_{2}} \simeq K_{0} \times K_{1}
$$

Example (Maps to underlying and fixed point homology)
$H_{\star} K_{\sigma} \cong E\left[e_{\sigma}, \bar{\alpha}_{(i)}\right]$

The homology of $K_{* \sigma}$

For finite sequences

$$
J=\left(j_{\sigma}, j_{0}, j_{1}, \cdots\right) \quad j_{k} \geq 0
$$

define

$$
\left(e_{\sigma} \bar{\alpha}\right)^{J}=e_{\sigma}^{\circ j_{\sigma}} \circ \bar{\alpha}_{(0)}^{\circ j_{0}} \circ \bar{\alpha}_{(1)}^{\circ j_{1}} \cdots
$$

Theorem

Then

$$
H_{\star} K_{* \sigma} \cong \otimes_{J} E\left[\left(e_{\sigma} \bar{\alpha}\right)^{J}\right]
$$

As an algebra where the tensor product is over all J and the coproduct follows by properties of the o-product from the $\bar{\alpha}$'s.

Theorem (Equivariant Thomason-Wilson)

The \circ product factors as

$$
\bigcap_{0}^{B_{t} K_{V} \times K_{W} \rightarrow} \bigcap_{t} K_{V+W}
$$

and the map

$$
\begin{aligned}
B_{t} K_{V} / B_{t-1} K_{V} \times K_{W} & \rightarrow B_{t} K_{V+W} / B_{t-1} K_{V+W} \\
S^{t} \wedge K_{V}^{\wedge t} \times K_{W} & \rightarrow S^{t} \wedge K_{V+W}^{\wedge t}
\end{aligned}
$$

is described inductively as $\left(k_{1}, \cdots, k_{t}\right) \circ k=\left(k_{1} \circ k, \cdots, k_{t} \circ k\right)$.

Theorem (Equivariant Thomason-Wilson)

Let $E_{*, \star}^{r}\left(E_{\star} K_{V}\right) \Longrightarrow E_{\star} K_{V+\sigma}$ be the bar spectral sequence and suppose E^{r} is $E_{\star}-$ flat for $i \leq r$.
Compatible with

$$
\circ: E_{\star} K_{V+1} \otimes_{H_{\star}} E_{\star} K_{W} \rightarrow E_{\star} K_{V+W+1}
$$

is a pairing

$$
E_{t, \star}^{r}\left(E_{\star} K_{V}\right) \otimes H_{\star} E_{\star} K_{W} \rightarrow E_{t, \star}^{r}\left(E_{\star} K_{V+w}\right)
$$

with $d^{r}(x) \circ y=d^{r}(x \circ y)$. For $r=1$ this pairing is given by

$$
\left(k_{1}|\cdots| k_{t}\right) \circ k=\sum \pm\left(k_{1} \circ k^{\prime}\left|k_{2} \circ k^{\prime \prime}\right| \cdots \mid k_{s} \circ k^{(t)}\right)
$$

where $k \rightarrow \sum k^{\prime} \otimes k^{\prime \prime} \otimes \cdots \otimes k^{(t)}$ is the iterated reduced coproduct.

The homology of K_{ρ}

Let

$$
\bar{\beta}_{i} \in H_{\rho i} K(\underline{\mathbb{Z}}, \rho), \quad(i \geq 0)
$$

This gives additional generators,

$$
\bar{\beta}_{(i)}=\bar{\beta}_{2^{i}} \quad(i \geq 0)
$$

of $H_{\star} K_{\rho}$ with coproduct

$$
\psi\left(\bar{\beta}_{n}\right)=\sum_{i=0}^{n} \bar{\beta}_{n-i} \otimes \bar{\beta}_{i} .
$$

Theorem
We have

$$
H_{\star} K_{\rho} \cong E\left[e_{1} \circ \bar{\alpha}_{(i)}, \alpha_{\left(i_{1}\right)} \circ \bar{\alpha}_{\left(i_{2}\right)}, \bar{\beta}_{(i)}\right]
$$

where $i_{1}<i_{2}$ and the coproduct follows by properties of the o-product from the $\bar{\alpha}_{(i)}$'s and $\bar{\beta}_{(i)}$'s.

Notation for the homology of $K_{\sigma+*}$

Then for finite sequences

$$
\begin{gathered}
I=\left(i_{1}, i_{2}, \cdots, i_{k}\right), \quad 0 \leq i_{1}<i_{2}<\cdots, \\
W=\left(w_{1}, w_{2}, \cdots, w_{q}\right), \quad 0 \leq w_{1}<w_{2}<\cdots,
\end{gathered}
$$

$J=\left(j_{-1}, j_{0}, j_{1}, \cdots, j_{\ell}\right), \quad$ where $j_{-1} \in\{0,1\}$ and all other $j_{n} \geq 0$, and

$$
Y=\left(y_{-1}, y_{0}, y_{1}, \cdots, y_{r}\right), \quad \text { where } y_{-1} \in\{0,1\} \text { and all other } y_{n} \geq 0
$$

define

$$
\begin{gathered}
\left(e_{1} \alpha \beta\right)^{I, J}=e_{1}^{\circ j_{-1}} \circ \alpha_{\left(i_{1}\right)} \circ \alpha_{\left(i_{2}\right)} \circ \cdots \circ \alpha_{\left(i_{k}\right)} \circ \beta_{(0)}^{\circ j_{0}} \circ \beta_{(1)}^{\circ j_{1}} \circ \cdots \circ \beta_{(\ell)}^{\circ j_{\ell}}, \\
\left(e_{1} \alpha \beta\right)^{W, Y}=e_{1}^{\circ y_{-1}} \circ \alpha_{\left(w_{1}\right)} \circ \alpha_{\left(w_{2}\right)} \circ \cdots \circ \alpha_{\left(w_{q}\right)} \circ \beta_{(0)}^{\circ y_{0} \circ \beta_{(1)}^{\circ y_{1}} \circ \cdots \circ \beta_{(r)}^{\circ j_{r}},} \begin{array}{c}
|I|=k, \quad|W|=q \quad\|J\|=\Sigma j_{n}, \quad \text { and }\|Y\|=\Sigma y_{n} .
\end{array}, .
\end{gathered}
$$

The homology of $K_{\sigma+*}$

Theorem

Then, we have

$$
H_{\star} K_{\sigma+i} \cong E\left[\left(e_{1} \alpha \beta\right)^{I, J} \circ \bar{\alpha}_{(m)},\left(e_{1} \alpha \beta\right)^{W, Y} \circ \bar{\beta}_{(t)}\right]
$$

where $m>i_{k}$ and $m \geq \ell, t>w_{q}$ and $t \geq y_{r},|I|+2\|J\|=i$ and $|W|+2\|Y\|=i-1$, and the coproduct follows by Hopf ring properties from the $\alpha_{(i)}$'s, $\beta_{(i)}$'s, $\bar{\alpha}_{(i)}$'s and $\bar{\beta}_{(i)}$'s.

The homology of $K_{2 \sigma+1}$

Example

$$
K_{2 \sigma+1} \quad K_{2 \sigma+1}^{e} \simeq K_{3} \quad K_{2 \sigma+1}^{C_{2}} \simeq K_{1} \times K_{2} \times K_{3}
$$

$H_{*} K_{2 \sigma+1}$ is exterior on generators

$$
\begin{array}{ll}
e_{1} \circ e_{\sigma} \circ e_{\sigma}, & \bar{\beta}_{\left(j_{1}\right)} \circ \bar{\alpha}_{\left(j_{2}\right)} \circ \bar{\alpha}_{\left(j_{1}\right)} \circ \bar{\alpha}_{\left(j_{2}\right)}, \\
\phi^{(k)}\left(e_{\sigma} \circ e_{\sigma}\right), & \\
& \alpha_{\left(i_{1}\right)} \circ \bar{\alpha}_{\left(i_{2}\right)} \circ \bar{\alpha}_{\left(j_{3}\right)} .
\end{array}
$$

The homology of $K_{2 \sigma+i, i \geq 2}$

$$
K_{2 \sigma+i} \quad K_{2 \sigma+i}^{e} \simeq K_{2+i} \quad K_{2 \sigma+i}^{C_{2}} \simeq K_{i} \times K_{i+1} \times K_{i+2}
$$

Theorem
The homology $H_{\star} K_{2 \sigma+i}$ where $i \geq 2$ is exterior on generators

$$
H_{*} K_{i-2} \circ \bar{\beta}_{\left(j_{1}\right)} \circ \bar{\beta}_{\left(j_{1}\right)}, \quad H_{*} K_{i-1} \circ \bar{\beta}_{\left(j_{1}\right)} \circ \bar{\alpha}_{\left(j_{2}\right)}, \quad H_{*} K_{i} \circ e_{1} \circ \bar{\alpha}_{\left(j_{1}\right)} \circ \bar{\alpha}_{\left(j_{2}\right)},
$$

$H_{*} K_{i-1} \circ \phi^{(k)}\left(e_{\sigma} \circ e_{\sigma}\right)$,

The homology of K_{V} where $2 \sigma+1 \subset V$

Theorem

The $R O\left(C_{2}\right)$-graded homology of $K_{V}, 2 \sigma+1 \subset V$, is exterior on generators given by the cycles on the E^{2}-page of the $R O\left(C_{2}\right)$-graded spectral sequence. Equivalently, $R O\left(C_{2}\right)$-graded bar spectral sequences computing $H_{\star} K_{V}$ collapse on the E^{2}-page.

Proof idea.
Use Hopf ring structure on E^{r}-page to eliminate nontrivial differentials

Future directions

Stably,

$$
H_{\star} H \simeq H_{\star}\left[\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \xi_{1}, \xi_{2}, \cdots\right] /\left(\tau_{i}^{2}=\left(u+a \tau_{0}\right) \xi_{i+1}+a \tau_{i+1}\right)
$$

- What does an arbitrary element in $H_{\star} K_{V}$ stabilize to in the the C_{2}-equivariant dual Steenrod algebra?
- How does the stable relation $\tau_{i}^{2}=\left(u+a \tau_{0}\right) \xi_{i+1}+a \tau_{i+1}$ arise unstably?
- Equivariant analogues of Ravenel-Wilson computations
- Algebra of twisted spectral sequences
- $R O\left(C_{2}\right)$-graded bicommutative Hopf rings, C_{2}-Brown-Gitler Spectra, and Dieudonne theory

