eCHT. The R-mativic Steenrod subalgebra ACI and its 128 module structures. Joint work with Prasit Bhattacharya and Bert Guillou.
$H^{*} C_{-} ; \mathbb{F}_{2}$) cohomology operations form Steerod algebra A. $1^{*}(X)$ is an A-module.
$H^{*}(X) \stackrel{\cong}{=} M$, as an A-module? realization. problem.
X is a realization of M.
Notation: $\quad S \xrightarrow{2} S \rightarrow S / 2$ cofiber. $\quad H^{*}(S / 2): \quad i S_{q}^{\prime} \quad 2$ is deleted by S_{q}^{\prime}

$$
\begin{aligned}
& \Sigma^{\prime} S \eta \delta \rightarrow S / \eta \\
& Y:=S / 2 \wedge S / \eta
\end{aligned}
$$

$$
H^{*}(S / q): \quad \int_{q} S_{q}^{2}
$$

$H^{*}(Y):$

Self map of $\Sigma^{i} X \xrightarrow{\nu} X$ gives families in $\pi_{*}\left(S^{\circ}\right)$.

$$
\text { by } \quad s^{i k} \rightarrow \Sigma^{i k u^{k}} X \rightarrow \delta^{t}
$$

[Davis - Mahowald 1980]
first construct A_{1} using stunted real projective space.

$$
p_{5}^{8} \xrightarrow{g} p_{3}^{6}
$$

$Y \stackrel{j}{\rightarrow} A_{1}$ induces sur in H^{*}, and cofiber $(j) \simeq \Sigma^{3} Y$.

$$
Y \rightarrow A_{1} \rightarrow \Sigma^{3} Y \rightarrow \Sigma^{\prime} Y
$$

$A(1)$ is gen by $S q^{\prime}$ and S_{q}^{2}.

The [OM 1980]. $\exists 8$ distinct u_{1} selfmaps whose cofibers A_{1} have 4 distinct hey types. such that $H^{*}\left(A_{1}\right) \cong A(1)$.

Summary: . construct A_{1} such that $H^{*}\left(A_{1}\right) \cong A(1)$, as $A(1)$-mod.

- find v_{1}-selfmap on Y and identify $H^{*}\left(C\left(v_{1}\right)\right)$ with $H^{*}\left(A_{1}\right)$
- analyze A-mod struture of $A(1)$. (htpy types of A_{1}).
- connect to U_{1}-selfimap: given A-mod str, it is realized by which u_{1}.self mops mops
[Voevodsky 2003]. gives notion of motivic homotopy theory, cofiber.
$S^{1,0}=\partial \Delta^{\prime} \quad$ simplicial sphere.
$S^{\prime \prime 1}=G \quad$ geometric sphere.
we have steenrod algebra A^{R}

$$
\mathrm{SH} H^{\mathrm{R}} \xrightarrow{\mathrm{Be}} \mathrm{SH}^{C_{2}} \xrightarrow{\text { res }} \mathrm{SH}
$$

$$
h=1-\varepsilon . \varepsilon_{i} s^{\prime \prime} \wedge s^{\prime \prime 1} \rightarrow s^{(1)} \wedge \delta^{\prime, 1}
$$

is the \mathbb{R}-motivic Hoof map.
y is the Hope construction of

$$
\delta^{1,1} \times \delta^{1,1} \xrightarrow{m} \delta^{1,1}
$$

$$
\begin{aligned}
& H^{* *}(p t)_{1}=M_{2}=\mathbb{F}_{2}[\tau, \rho] \\
& \rho: S^{0} \rightarrow S^{\sigma} \\
& S q \\
& S^{\prime} \tau=p
\end{aligned}
$$

we construct $A_{i}^{\mathbb{R}}$

$$
Q: \int_{h!}^{(\eta} \quad e\left(H^{* x}(Q)^{\otimes 3}\right) \text { is }
$$

a free $A(1)$-mod.
we compute v_{1} in

$$
\begin{gathered}
\operatorname{Ext}_{A^{R}}\left(H^{* *}(Y \wedge D Y), M_{2}^{\mathbb{R}}\right) \\
\Downarrow, \\
{[Y, Y]}
\end{gathered}
$$

identify $H^{* *}\left(C\left(v_{1}\right)\right) \cong H^{* *}\left(A_{1}^{(R)}\right)_{1}$ we dort know if $\left(\mathrm{C}_{1}\right)$ has the same entry type of A_{1}.

Figure: $H^{* *}(S / 2)$

Figure: $H^{* *}(S / h)$

$$
f^{y^{\prime *}}\left(\mathrm{~kg}^{\prime}\right) \cong A^{\text {IR }}\left(g(1)^{\mathbb{R}}\right.
$$

if treat each cone as dot.

$$
\begin{aligned}
& S_{q}^{4} 1_{00}=\beta_{03}\left(\rho \cdot y_{31}\right)+\left(1+\beta_{03}+\beta_{14}\right)\left(\tau \cdot y_{41}\right)+\alpha_{03}\left(\rho \cdot x_{31}\right) \\
& s_{q}^{4} x_{10}=y_{52}+\beta_{14}\left(\rho \cdot y_{41}\right) \\
& S_{q}^{4} \lambda_{21}=\beta_{26}\left(2 \cdot y_{62}\right)+\beta_{25}\left(\varphi \cdot y_{52}\right)+j_{24}\left(p^{2} \cdot y_{41}\right) \\
& x_{31}=\begin{array}{l}
y_{62} \\
y_{21} \\
y_{52} \\
y_{41} \\
y_{31} \\
x_{10} \\
x_{10}
\end{array} \\
& S_{q}^{4} \alpha_{31}=\left(\beta_{25}+\beta_{26}\right)\left(p \cdot y_{62}\right) \\
& S_{q}^{4} y_{31}=\gamma_{36}\left(\rho \cdot y_{62}\right) \quad \text { with } \hat{j}_{24}=\beta_{03} \gamma_{36}+\alpha_{03}\left(\beta_{25}+\beta_{26}\right) \\
& S_{q}^{8} 1_{100}=\beta_{06}\left(p^{2} \cdot y_{62}\right)
\end{aligned}
$$

in $S H^{R}$, we have $Y_{2}:=S / 2 \Lambda S / \eta \quad Y_{h}:=S / 4 \Lambda / q$.

VI-selfmap is between $\left\{Y_{2}, Y_{h}\right\}$!!
Thm [BGL, 2021].

$$
\Sigma^{3} H^{* *}\left(Y_{q}\right) \rightarrow A(1)^{1 R} \rightarrow H^{* *}\left(Y_{\delta}\right)
$$

Let $\varepsilon=\left\{\begin{array}{c}h \\ 2\end{array}\right.$ if $\beta_{25}+\beta_{26}+\gamma_{36}=0 \quad \delta \quad\left\{\begin{array}{c}h \\ 2\end{array}\right.$ if $\alpha_{03}+\beta_{03}=0$

