UNIVERSAL EXPONENTIAL FORMULAS: joint work-in-progness with Nate Comenius, Doris Deaton, Lewis Dominguez, Exon Fromehere, Shahzad Kalloo, Nat Stapleton
What is an exponential formula?
power sum $p_{k}\left(x_{1},-, x_{n}\right)=x_{1}^{k}+x_{2}^{k}+-+x_{n}^{k}$
sum of homogeneosos symmetric polynomial $h_{k}\left(x_{1},-, x_{n}\right)=\prod_{i_{1}+-+i_{n}=k} x_{1}^{i_{1}} x_{2}^{i_{2}}-x_{n}^{i_{n}}$ homogeneous, monomials of degree B

$$
\begin{aligned}
& h_{3}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{3} \\
& \left.h_{1}\left(x_{1},-x_{n}\right)=p_{1}\left(x_{1}\right)-, x_{n}\right) \\
& h_{k}=\frac{1}{k} \sum_{i=1}^{k} h_{k-i} p_{i}
\end{aligned}
$$

Exponential Formula:

$$
\begin{array}{r}
\left.\sum_{m \geq 0} h_{m} t^{m}=\exp ^{(} \sum_{k \geqslant 1} p_{k} \frac{t^{k}}{k}\right) \\
\exp (t)=\sum_{m \geq 0} t^{m}
\end{array}
$$

There is a robust analogy: $h_{m} \leadsto \sim$ symmetric powers
$P_{k} \longleftrightarrow$ Adams operations ψ^{k}
Recall: G a finite group, $R U(G)$ representation ring, $k \geq 0$
The Adams operations $\psi^{k}: \operatorname{RU}(G) \longrightarrow R U(G)$ are characterized by

- ψ^{k} is a ring homomorphism $\Rightarrow \psi^{k}(1)=1 \Rightarrow \psi^{k}(n)=n$
- if $\operatorname{dim}(v)=1, \psi^{k}(v)=v^{\otimes k}$
- ψ^{k} is natural in G

$$
\begin{aligned}
& \begin{array}{l}
\text { Vatrivial } \\
\begin{array}{l}
G-r e p \\
\operatorname{dim} V=n
\end{array}
\end{array} \quad \sum_{m \geq 0}\binom{m+n-1}{m^{m}} t^{m}=\operatorname{dim} \operatorname{Sym}^{m}(v) . ~\left(\sum_{k \geq 1} \uparrow^{n} \frac{t^{k}}{k}\right) \\
& =h_{m}(1,1,-, 1) \\
& n=\operatorname{dim} \psi^{k}(v) \\
& n=\rho_{k}(1,1,-1)
\end{aligned}
$$

Internet $R U(G)$ as $K U_{G}(*)$; formulas upgrade to statements about cohomology operations on $K U_{G}$.
This is the height one integral version of the following:
Theorem (Gater): In Mavava E-theory at height n, prime p

$$
\sum_{m \geq 0} \beta_{\uparrow} t^{m}=\exp \left(\sum_{k \geq 0} T_{p^{k}} \frac{t^{p^{k}}}{p^{k}}\right)
$$

"symmetric powers"
Heck operations
Goal: new, categorical proof of this via universal properties
Question: Where da these formulas live?
Work with the representation ring case.

Note that Sym ${ }^{m}$ factors through the (total) power operations

$$
\begin{aligned}
& V \longmapsto V^{\text {in }} \curvearrowleft \Sigma_{m} \longmapsto \operatorname{Sym}^{m}(V)
\end{aligned}
$$

Remark: P_{m} is only a multiplicative homomocophimen

Remark: the name "total power -operation" is already taken. Summa is Latin for total, and also. this is a "sum of commutative ring
via power operations"
(credit to Adrielle Stapleton for the nome)

Adams ops factor through power operations in a different way

$$
\psi^{R}:\left.\operatorname{RU}(G) \xrightarrow{P_{R}} \operatorname{RU}\left(G \times \Sigma_{m}\right) \longrightarrow \operatorname{RU}\left(G \times \Sigma_{m}\right)\right|_{I_{+r}} \cong \operatorname{RU}(G)
$$

P_{m} is multiplicative homomorphism,
$\psi^{k}=P_{k} I_{t+r}$ is ring homomorphism
smallest ideal such
that the composite is a
ring homomorphism, generated by images of had $\Sigma_{m} \times \Sigma_{j} \quad \begin{aligned} & i+j=m \\ & i, j>0\end{aligned}$

Note $\exp (t)=\sum_{m \geq 0} \frac{t^{m}}{m!} \notin \mathbb{Z}[t]$. It lives in $\mathbb{Z}\langle\langle t\rangle\rangle<$ ring of divided power series $\sum_{m \geqslant 0} a_{m} \frac{t^{m}}{m!}$
So $\exp \left(\sum_{k=1} \psi^{k} \frac{t^{k}}{k}\right)$ a prior lives in $R U(G)\langle\langle t\rangle\rangle$.
What about an exponential formula for $\sum_{m ? 0} P_{m} t^{m}$? Where should this live?
Integor-valued class functions

$$
\prod_{m \geq 0} R U\left(G_{x} \Sigma_{m}\right) t^{m} \cong \prod_{m \geq 0} R U(G) \otimes R U\left(\Sigma_{m}\right) t^{m} \xrightarrow{1 \otimes x} \prod_{m \geq 0} R U(G) \otimes C_{1}\left(\Sigma_{m}, \mathbb{Z}\right) t^{m}
$$

Product on $\prod_{m \geq 0} \operatorname{RU}(G) \otimes C I\left(\Sigma_{m}, \mathbb{Z}\right) t^{m}$ assume G is trivial for convenience
Recall $\left\{\right.$ conjugacy classes in $\left.\Sigma_{m}\right\} \cong\{$ partitions $\lambda 1-m\}$
$\lambda \vdash m \quad \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ with $\sum \lambda_{i} i=m$

$$
\begin{aligned}
& \lambda=1+1+1+3+3-9 \\
& \lambda_{1}=3, \quad \lambda_{3}=2
\end{aligned}
$$

$\operatorname{Cl}\left(\Sigma_{m}, \mathbb{Z}\right)$ has a basis of characteristic functions $\left\{\mathbb{1}_{\lambda}\right\}_{\lambda-m} \quad \lambda!=3!2!$ - vector addition
transfer product on $\prod_{m \geq 0} C l\left(\Sigma_{m}, \mathbb{Z}\right) t^{m}$ given by $\mathbb{1}_{\lambda} t^{m} \cdot \mathbb{1}_{\tau} t^{n}=\frac{(\lambda+\tau)!}{\lambda!\tau!} \mathbb{1}_{\lambda+\tau} t^{m+n}$

$$
\begin{array}{ll}
\tau=1+2-3 & (\lambda+\tau)_{1}=4 \\
\tau_{1}=1, \tau_{2}=1 & (\lambda+\tau)!=4!1!2!
\end{array}
$$

Claim: $\prod_{m \geq 0} C l\left(\Sigma_{m}, \mathbb{Z}\right) t^{m}$ is a divided power algebra

$$
\begin{aligned}
& \mathbb{1}_{\lambda} t^{m} \cdot \mathbb{1}_{\tau} t^{n}=\frac{(\lambda+\tau)!}{\lambda!\tau!} \mathbb{1}_{\lambda+\tau} t^{m+n} \\
& \text { alar multiplication addition } \\
& \lambda!=\prod_{i} \lambda_{i}!
\end{aligned}
$$

scalar multiplication \downarrow

$$
\begin{aligned}
& \mathbb{1}_{\lambda}^{k} t_{\uparrow}^{m}=\frac{(k \cdot \lambda)!}{(\lambda!)^{k}} \mathbb{1}_{k \cdot \lambda} t^{k m} \quad \text { order of } \sum_{k \lambda} \\
& \text { order of } \sum_{\lambda}^{x k}
\end{aligned}
$$

$\sum_{k \lambda}$
Ul

$$
\Sigma_{\lambda} 2 \Sigma_{k}
$$

$$
u!\longleftarrow \begin{gathered}
\text { index } \\
k!
\end{gathered}
$$

$$
\sum_{\lambda}^{x k}
$$

Proposition: As functions $\operatorname{RU}(G) \longrightarrow \prod_{m \geq 0} \operatorname{RU}(G) \otimes C l\left(\Sigma_{m}, \mathbb{Z}\right) t^{m}$,
$\begin{aligned} & \text { the functions } \\ & \text { send addition } \\ & \text { to multiplication }\end{aligned} \sum_{m \geq 0} P_{m} t^{m}=\exp \left(\sum_{k \geq 1} \psi^{k} \otimes \mathbb{1}_{k-k} t^{m}\right)$
Can recover previous exponential formula: partition $\lambda 1-k, \lambda_{k}=1$

$$
\begin{array}{r}
R U(G) \longrightarrow \prod_{m \geq 0} \operatorname{RU}\left(G \times \Sigma_{m}\right) t^{m} \longrightarrow \operatorname{RU}(G)[t \rrbracket \\
\\
\prod_{m \geq 0} \operatorname{RUl}_{1}(G) \otimes C \mid\left(\Sigma_{m}, \mathbb{Z}\right) t^{m} \cdots \rightarrow R U(G)\langle\langle t\rangle\rangle
\end{array}
$$

exponential formula hereeds expmenential formula here

Question: How general is this? When do we have exponential formulas?
Replace RU by a global Green functor R:

$$
\begin{aligned}
R=\left(R^{*}, R_{*}\right) \quad & R^{*}: \text { Group }^{\circ p} \longrightarrow C R \text { ing }, R_{*}: \text { Group } \hookrightarrow \longrightarrow A b \\
& R^{*}(G)=R_{*}(G) \\
& t_{f}=R_{*}(H \stackrel{f}{\longrightarrow} K): R(H) \rightarrow R(K) \\
& + \text { conditions }
\end{aligned}
$$

Examples: $\mathrm{RU}, \mathrm{Cl}(-, \mathbb{Z}), \mathrm{ClC}(-\mathbb{C}), A, H^{*}(-; k), E_{\uparrow}^{+}(B(-)), \ldots$ Burnside ring

If R is a global Green functor, build a commutative ring $R[\Sigma]=\prod_{m \geqslant 0} R\left(\Sigma_{m}\right) t^{m}$ product $a t^{i} \cdot b t^{j}=\operatorname{tr}_{\sum_{i} \times \sum_{j}}^{\sum_{i+j}}(a \otimes b) t^{i+j}$

$$
R\left(\Sigma_{i}\right) \otimes R\left(\Sigma_{j}\right) \xrightarrow{P_{i}^{*} \otimes P_{R}^{*}} R\left(\Sigma_{i} \times \Sigma_{j}\right)
$$

What plays the role of class functions?

Theorem : $R\langle\langle\Sigma\rangle\rangle$ admits a canonical ring structure with a ring homomorphism $R[I \Sigma] \longrightarrow R\langle\langle\Sigma\rangle\rangle$. Furthermore, $R\langle\langle\Sigma\rangle$ is a divided power algebra.

If R is a global power functor, can build $P_{m} / I_{+r}: R(G) \rightarrow R\left(G \times \Sigma_{m}\right) \rightarrow R\left(G \times \Sigma_{m}\right) / I_{t r}$ global Green functor + power operations $P_{m}: R(G) \longrightarrow R\left(G \times \Sigma_{m}\right)$

Corollary: If R is a global power functor such that $R\left(G \times \Sigma_{m}\right) \cong R(G) \otimes R\left(\Sigma_{m}\right)$ for all G, m then

$$
\sum_{m \geqslant 0} P_{m} t^{m}=\exp \left(\sum_{k \geqslant 1} P_{k} I_{I_{+r}} \otimes \mathbb{1}_{k+k} t^{k}\right) \quad \text { partition } \lambda \vdash-k
$$

as functions $R(G) \longrightarrow R(G) \widehat{\otimes} R\langle\Sigma\rangle$ be careful with $R(e)$ completions

Universal property: For an ordinary commutative ring S with a homomorphism* $R(G) \hat{R}(e) \mathbb{R} R[\Sigma] \longrightarrow S[t]$,

Corollary: Recover Canter's formula for $R=E^{*}(B(-)), S=E^{*}$ * of bialgebras!

