UNIVERSAL EXPONENTIAL FORMULAS: joint work-in-progress with Nate Cornelius, Davis Deaton, Lewis Dominguez, Evon Fronchere, Shahzad Kalloo, Nat Stapleton
Power sum $P_{\mathbf{k}}(x_{1}, \dots, x_{n}) = x_{1}^{\mathbf{k}} + x_{2}^{\mathbf{k}} + \dots + x_{n}^{\mathbf{k}}$ homogeneous symmetric polynomial $h_{\mathbf{k}}(x_{1}, \dots, x_{n}) = \prod_{i_{1}+\dots+i_{n}=\mathbf{k}} x_{i_{1}}^{i_{1}} x_{2}^{i_{2}} - x_{n}^{i_{n}}$ monomials of degree \mathbf{k}
$h_3(x_1, x_2) = x_1^3 + x_1^2 x_2 + x_1 x_2^2 + x_2^3$ Exponential Formula:
$ \begin{split} h_{1}(x_{1}, \ldots, x_{n}) &= p_{1}(x_{1}, \ldots, x_{n}) \\ h_{k} &= \frac{1}{k} \sum_{i=1}^{k} h_{k-i} p_{i}' \\ & \qquad \qquad$

There is a robust analogy: hm m symmetric powers Recall: G a finite group, RU(G) representation ning, k20 The Adams operations 42: RU(G) -> RU(G) are characterized by • ψ^k is a ring homomorphism $\implies \psi^k(n) = 1 \implies \psi^k(n) = n$ • if $d_{im}(V) = 1$, $\Psi^{k}(V) = V^{\otimes k}$. UR is natural in G Analogy $\implies \sum_{m \ge 0} Symm t^m = \exp\left(\sum_{k \ge 1} \frac{\psi^k t^k}{k}\right) \leftarrow gives \psi^k in terms of Symmetry$ V a trivial G-rep giwnan $= h_{m}(1, 1, -, 1)$

Interpret $RU(G)$ as $KU_G(*)$; formulas upgrade to statements about cohoperations on KU_G .	andlogy	
This is the height one integral version of the following:		
Theorem (Ganter): In Marava E-theory at height n, prime p		
$\sum_{m\geq 0} \beta_m t^m = \exp\left(\sum_{k\geq 0} T_{p^k} \frac{t^{p^k}}{p^k}\right)$ "symmetric powers" $\sum_{k\geq 0} p^k Hecke \text{ operations}$		
"symmetric powers" L Hecke operations		
Goal: new, categorical proof of this via universal properties		
Question: Where do these formulas live?		
Work with the representation ring case.		

Note that Sym ^m factors	through the (total)	power operations	
Sym ^m : RU(G) <u> </u>	$ \rightarrow \operatorname{RU}(\operatorname{Gx}\Sigma_{m}) \longrightarrow V^{\otimes m} \curvearrowright \Sigma_{m} \longmapsto $	-⊗α[Gxɛm] ^{Q[G]} Ind ^G xEm Sym ^m	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
Remark: Pm is only a multipl	icative homomorphism		-ring homomorphism
"Summa power		∑ Ind G tm G×En tm Map down to get	{U(G)[[t]] ∑Sym ^m t ^m m≥o
	commutative ring via		- Goots diagonally
Remark: the name "total power operation" is already taken. Summa is Latin for total, and also this is a "sum of power operations" (credit to Adrielle Stapleton for the	L'transfer n	$S \times \Sigma_{i+j}$ $(V \boxtimes W) t^{i+j}$ $S \times \Sigma_{i} \times \Sigma_{j}$ Aultiplication "	Ei acts on left Ei acts on right

Adams ops factor through power operations in a different way $\Psi^{\mathsf{R}}: \mathsf{RU}(\mathsf{G}) \xrightarrow{\mathsf{P}_{\mathsf{R}}} \mathsf{RU}(\mathsf{G} \times \Sigma_{\mathsf{m}}) \xrightarrow{\mathsf{RU}(\mathsf{G} \times \Sigma_{\mathsf{m}})} \mathsf{RU}(\mathsf{G} \times \Sigma_{\mathsf{m}})/\mathsf{T}_{\mathsf{tr}}$ \cong RU(G) Pm is multiplicative homomorphism, smallest ideal such fthat the composite is a ring homomorphism, generated by images of $hal \sum_{i \times \sum_{j=1}^{n} i+j=m} \sum_{i \times \sum_{j=1}^{n} i,j>0}$ V^k = P_R J_{I+r} is ring homomorphism C "additive power operation" ring of divided power series Note $\exp(t) = \sum_{m \ge 0} \frac{t^m}{m!} \notin \mathbb{Z}[[t]]$. It lives in $\mathbb{Z}(\langle t \rangle) \leftarrow$ $\sum_{\substack{m \ge 0 \\ m \ge 0 }} a_m \frac{t^m}{m!}$ So $exp\left(\sum_{k\geq 1} \frac{\psi k t^k}{k}\right)$ a priori lives in $RU(G)\langle\langle t\rangle\rangle$ What about an exponential formula for $\sum_{m \ge 0} P_m t^m$? Where should this live? ______ class functions $\frac{1}{1} \operatorname{RU}(\operatorname{Gx} \mathcal{E}_{m}) t^{m} \xrightarrow{\cong} \operatorname{TRU}(\operatorname{G}) \otimes \operatorname{RU}(\mathcal{E}_{m}) t^{m} \xrightarrow{1 \otimes 2} \operatorname{TRU}(\operatorname{G}) \otimes \operatorname{Cl}(\mathcal{E}_{m}, \mathbb{Z}) t^{m}$

Product on $\prod_{m \ge 0} RU(G) \otimes CI(\Sigma_m, \mathbb{Z}) t^m$ assume G is trivial for convenience
Recall $\{conjugacy classes in \mathbb{Z}_m\} \cong \{partitions \} \vdash m\}$
$\lambda \vdash m$ $\lambda = (\lambda, \lambda_2, \lambda_3, \ldots)$ with $\sum \lambda_i i = m$ $\lambda_i = 1 + 1 + 1 + 3 + 3 \vdash 9$ $\lambda_i = 3, \lambda_3 = 2$
$CI(\Sigma_m, \mathbb{Z})$ has a basis of characteristic functions $\{1, 2\}_{\lambda = 0}$ $\lambda = 3.2!$ vector addition
transfer product on $\prod_{m \ge 0} Cl(\Sigma_m, \mathbb{Z})t^m$ given by $\mathbb{1}_{\lambda}t^m \cdot \mathbb{1}_{\tau}t^n = \frac{(\lambda + \tau)!}{\lambda! \tau!} \mathbb{1}_{\lambda + \tau}t^{m + n}$
$T = 1 + 2 - 3 \qquad (\lambda + \tau)_{i} = 4$
$\tau_{1}=1, \tau_{2}=1$ $(\lambda+\tau) = 4 \cdot 1 \cdot 2$

Claim: $TT Cl(Z_m, Z)t^m$ is a divided power all m_{zo}	gebror
rector addition ;f	algebra such that $ x > 0$, $ x x ^{k}$
$\mathbb{1}_{\lambda}t^{m}\cdot\mathbb{1}_{\tau}t^{n}=\frac{(\lambda+\tau)!}{\lambda!\cdot\tau!}\mathbb{1}_{\lambda+\tau}t^{m+n}$	
scalar multiplication T $\lambda_{i} = T \lambda_{i}$	$\sum_{k=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}\sum_{j=1}^{$
$\mathbb{1}^{k}_{\lambda} t^{m} = \frac{(k \cdot \lambda)!}{(\lambda' \cdot)^{k}} \mathbb{1}_{k \cdot \lambda} t^{km} \text{order of } \Sigma_{k\lambda}$	UI $\Sigma_{\lambda} Z \Sigma_{k}$
m>0 order of Z	$-\lambda$ $UI \leftarrow index R$
$\sum_{\lambda} = \prod_{i} \sum_{\lambda} \lambda_{i}$	

$\frac{P_{roposition}}{m_{zo}}: As functions RU(G) \longrightarrow TT RU(G) \otimes CI(Z_m, \mathbb{Z}) t^m,$	
these functions $\sum_{k \in \mathbb{N}} P_m t^m = \exp\left(\sum_{k \geq 1} \Psi^k \otimes \mathbb{1}_{k \mapsto k} t^m\right)$ to multiplication $m \geq 0$	
Can recover previous exponential formula: $partition \lambda - R, \lambda_k = 1$	
$RU(G) \longrightarrow \underset{M \ge O}{TT} RU(G \times S_{M}) t^{M} \longrightarrow RU(G) [\![t]\!]$	
$\prod_{m \ge 0} RU(G) \otimes Cl(\Sigma_m, \mathbb{Z}) + m \rightarrow RU(G) \langle \langle + \rangle \rangle \leftarrow 1$	
exponential formula here yields exponential	tormula here

Question: How general is this? When do we have exponential formulas?
Replace RU by a global Green functor R:
$R = (R^*, R_*) \qquad R^*: \text{Group}^{op} \longrightarrow CRing, \qquad R_*: \text{Group}^{\leftarrow} \longrightarrow Ab$ $R^*(G) = R_*(G)$ $F_f = R_*(H \stackrel{f}{\longrightarrow} K): R(H) \longrightarrow R(K)$
+ conditions
+ conditions <u>Examples</u> : RU, CI(-,Z), CI(-,C), A, H*(-;k), E ⁺ (B(-)), Burnside ring J field L homotopy commutative ring spectrum

If R is a global Green functor, build a commutative ring $R[[\Sigma]] = \prod_{m \ge 0} R(\Sigma_m) t^m$
product $at^{i} \cdot bt^{j} = fr_{\Sigma_{i} \times \Sigma_{j}}^{\Sigma_{i+j}} (a \boxtimes b) t^{i+j} \qquad \qquad$
What plays the role of class functions?
$R\left\langle\left\langle \Sigma\right\rangle\right\rangle = \prod_{m\geq 0} \bigoplus_{\lambda \vdash m} \begin{pmatrix} R(\Sigma^{\lambda})_{/I+r} \end{pmatrix}^{\Sigma_{\lambda}} t^{m} \text{When } R=RU, \begin{pmatrix} RU(\Sigma^{\lambda})_{/I+r} \end{pmatrix}^{\Sigma_{\lambda}} \cong \mathbb{Z} \\ \downarrow \downarrow_{\lambda} \text{ unit of } this ring H = C1(\Sigma_{m}, \mathbb{Z}) \\ \downarrow_{L_{\lambda}} \text{ Unit of } this ring H = C1(\Sigma_{m}, \mathbb{Z}) \end{pmatrix}$

$$\frac{\text{Theorem}: R\langle\!\langle \Sigma \rangle\!\rangle \text{ admits a canonical ring structure with a ring homomorphism } R[\![\Sigma]\!] \longrightarrow R\langle\!\langle \Sigma \rangle\!\rangle \text{ . Furthermore, } R\langle\!\langle \Sigma \rangle\!\rangle \text{ is a divided power algebra.} \\ \xrightarrow{\qquad\qquad} \text{additive power operation (ring ham)} \\ \text{If } R \text{ is a global power functor, can build } PM_{I_{tr}}: R(G) \longrightarrow R(G\times\Sigma_m) \longrightarrow R(G\times\Sigma_m) \\ \text{global Green functor + power operations } Pm: R(G) \longrightarrow R(G\times\Sigma_m) \\ \xrightarrow{\qquad} \text{Theorem} \\ \frac{Carollary: If R \text{ is a global power functor such that } R(G\times\Sigma_m) \cong R(G) \otimes R(\Sigma_m) \text{ for all } G, m \\ \text{theorem} \\ \xrightarrow{\qquad} Pmt^m = \exp\left(\sum_{R\geq 1} \frac{P_R}{I_{tr}} \otimes \mathbb{1}_{R-R} t^R\right) \\ \text{ partition } \lambda = k \\ \lambda_R = 1 \\ \text{ as functions } R(G) \longrightarrow R(G) \otimes R(K\Sigma) \\ \text{ be areful with a superior such that } \\ R(G) \otimes R(K\Sigma) \\ \text{ be areful with a superior such the superior operation } \\ \text{ and functions } R(G) \longrightarrow R(G) \otimes R(K\Sigma) \\ \text{ be areful with a superior such the superior operation } \\ \text{ and functions } R(G) \longrightarrow R(G) \otimes R(K\Sigma) \\ \text{ be areful with a superior such } \\ \text{ and function } R(G) \longrightarrow R(G) \otimes R(K\Sigma) \\ \text{ be an effective operation } \\ \text{ and function } \\ \text{ and function } \\ \text{ and function } \\ \\ \text{ and function } \\ \text{ and function } \\ \text{ and function } \\ \\ \\ \text{ and function } \\ \\ \text{ and functio$$

Universal property: For an ordinary commutative ring S with a homomorphism $*$ R(G) \otimes R[[Σ] \longrightarrow S[[t]], R(e)
$R(G) \longrightarrow R(G) \bigotimes_{R(e)} R[\Sigma] \longrightarrow S[t]$ homomorphism of divided power algebras
$R(G) \bigotimes_{R(e)} R(\langle \Sigma \rangle) \longrightarrow S(\langle t \rangle) \xrightarrow{\exists I} \xrightarrow{d} \longrightarrow S(\langle t \rangle) \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d} \xrightarrow{d}$
Corollary: Recover Ganter's formula for $R = E^*(B(-))$, $S = E^*$ * of bialgebras!