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Suggested Use. This document contains a wide sampling of introductory exercises related to
Hopf algebras, rings, and algebroid in algebraic topology. It is recommended to skim the entire
article, and then select a smaller subset of exercises that interest you to work through before
the workshop begins.

1. Hopf Algebras

These definitions and exercises are meant to accompany Milnor’s The Steenrod algebra and
its dual [8].

Definition 1.1. A bialgebra is a monoid in the category of coalgebras or equivalently a comonoid
in the category of algebras.

Definition 1.2. A Hopf algebra is an (associative and coassociative) bialgebra H over a field k
together with a k-linear map S : H → H (called the antipode) such that the diagram

H ⊗H H ⊗H

H H

H ⊗H H ⊗H

∆

S⊗ id

∇

∆ ∇

k

commutes. Here ∆ is the comultiplication of the bialgebra, ∇ is the multiplicaiton,η is the unit,
and η is the counit.

1.1. Hopf algebra exercises.

(1) This problem will lead you to prove that Milnor’s definiton of a connected Hopf algebra
(A∗, ψ∗, φ∗) as a connected graded algebra with unit (A∗, ψ∗) together with a homomor-
phism

φ∗ : A∗ → A∗ ⊗A∗
satisfying usual properties of a graded coproduct [8, Properties 2.1 & 2.3] is a graded
instance of the above definition. We will make use of the following definition.
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Definition 1.3. [9, Definition 8.1] If A is a connected coalgebra and B is a connected
algebra, let G(A,B) denote the set of morphisms of modules f : A→ B such that f0 is
the identity on k. If f, g ∈ G(A,B), let f ∗ g be the composition

A
∆−→ A⊗A f⊗g−−→ B ⊗B ϕ−→ B.

(a) Prove [9, Proposition 8.2] If A is a connected coalgebra, then G(A,B) is a group
under the operation ∗ with identity

A
ε−→ k

η−→ B.

(b) If A is a connected Hopf algebra, use part (a) to define the antipode on A [9,
Definition 8.4].

(c) Show Milnor’s definition of a connected Hopf algebra (A∗, ψ∗, φ∗ satisfies the prop-
erties of Definition 1.2.

2. Ravenel–Wilson Hopf ring techniques

The exercises in this section are meant to give a solid introduction to Ravenel–Wilson style
Hopf ring techniques. They accompany the results of [19, 14, 4, 12, 3].

2.1. The mod p-homology of Eilenberg–MacLane spaces exercises.

(1) Show that the tensor product is a product in the category of coalgebras.
(2) Show that a Hopf algebra is a group object in the category of coalgebras.
(3) Show that a Hopf ring is a ring in the category of coalgebras and deduce the associativity

law.
(4) Let

E(x) = Z/pZ [x]/(x2) and T (x) = Z/pZ [x]/(xp)

denote the exterior algebra and height p truncated polynomial algebra, respectively.
Compute:
(a) TorE(x)(Fp,Fp)
(b) TorT (x)(Fp,Fp) (it may be helpful to see [10, Borel transgression Theorem 12.11.2])

(5) Write the Serre generators for the cohomology of the first few Eilenberg–MacLane
spaces (see, for instance, the section on the cohomology of Eilenberg-MacLane spaces
in Hatcher’s Spectral Sequences Chapter). Compare these with the Ravenel–Wilson
homology generators for the same spaces.

(6) Use the bar spectral sequence and bar spectral sequence pairing to compute

E2
∗,∗ ' TorH∗(K(Z/pZ,0);Fp)(Fp,Fp) =⇒ H∗K1

∼= E[e1, α(i)]

and

E2
∗,∗ ' TorH∗(K(Z/pZ,1);Fp)(Fp,Fp) =⇒ H∗K2

∼= E[e1 ◦ α(i), α(i1) ◦ α(i2), β(j)]

in the notation from pg. 52 of the Brown-Peterson homology sampler.

2.2. The Hopf ring for complex cobordism exercises.

(1) Let C be a category with finite products and a terminal object NC , D be a category
with finite products and a terminal object ND, and F : C → D be a product preserving
functor, that is, a functor F such that F(NC) = ND and there is a natural equivalence
of functors

F(−)ΠF(−) ' F(−Π−)
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from C ×C to D. Prove that if X∗ is a graded ring object over C, then F(X∗) is a graded
ring object over D [14, Lemma 1.1].

(2) The cobordism group of complex maps of codimension 2n is the complex bordism group
MU∗MUn, and MU∗MU is the cobordism group of all maps with even codimension [18].
The additive and multiplicative products in MU induce products in MU∗MU∗ which
can be described geometrically. First observe that the additive product is the H-space
structure on MU , which arises from the fact that it is a loop space; the multiplicative
product is induced by the Whitney sum maps

MUn ∧MUm →MUn+m.

Prove that if fi : Mi → Ni, i = 1, 2 represents an element of MU∗MU, then their
multiplicative and additive products are represented by

f1 × f2 : M1 ×M2 → N1 ×N2

and

f1 × 1 t 1× f2 : M1 ×N2 tN1 ×M2 → N1 ×N2

respectively [14, Proposition 2.2].
(3) Recall E∗CP∞ ∼= E∗[[x]]. Let βn ∈ E2nCP

∞ be dual to xn and define

β(r) =
∑
i≥0

βir
i.

Unpack the notation in the proof of [14, Theorem 3.2] to show

β(s)β(t) = β(s+F t).

2.3. The structure of spaces representing a Landweber exact cohomology theory
exercises.

(1) Let E = {Er} be a multiplicative Ω-spectrum with a Künneth isomorphism and consider
v ∈ π−r(E) as an unbased map

v : point → Er.

Select a generator γ of H0(point, R), where R is a commutative ring. Define [v] as the
image under v∗ of γ. Show

[v] ∗ [w] = [v + w]

[v] ◦ [w] = [vw]

ψ[v] = [v]⊗ [v].

(2) Let E∗(−) be a complex oriented cohomology theory. Show that there is a ring map
MU∗ → E∗ (this is either trivial or a theorem depending on your definition of complex
oriented). Furthermore, observe that if

MU∗(−)⊗MU∗ E∗

is a homology theory, then this homology theory is naturally isomorphic to E∗(−) on
finite complexes.

(3) Landweber’s original statement of the exact functor theorem says that a ring map
MU∗ → E∗ specifies a homology theory

MU∗(−)⊗MU∗ E∗

if and only if, for each prime p, the image of the sequence v0, v1, ... in E∗ is regular. Note
that H∗(−;Z/p) and KU∗(−) are both complex oriented, so that we have ring maps



4

MU∗ → Z/p and MU∗ → KU∗. Using the LEFT, show that the first map does not
define a homology theory, but that the second map does.

Hint : Use the fact that the formal group law corresponding to H∗(−;Z/p) is

F (x, y) = x+ y

and the formal group law corresponding to KU∗(−) is

F (x, y) = x+ y − v1xy

2.4. The HF2-homology of C2-equivariant Eilenberg–MacLane spaces exercises.

(1) Convince yourself that K(F2, σ) ' BσF2 is the space of lines in R∞ρ.
(2) Try this exercise if you haven’t seen equivariant cohomology theories before.

Classically, the best way to compute things like HF∗2(X) is to have a cell structure on
X and use the cellular cochains. We can do a similar thing equivariantly. Equivariantly
we have G-cells which are spaces of the form G/H+ ∧ Dn for subgroups H ⊂ G and
n ∈ N. If we can construct a G-space X inductively by attatching n-cells to a Xn−1 via
equivariant maps

G/H+ ∧ ∂Dn → Xn−1

we call X a G-CW complex. Suppose X has a G-equivariant cell structure and let Cn(X)
be the free abelian group on the set of n-dimensional G-cells. Note that the generators of
this group have a natural G-action. Then for an abelian group A with trivial C2-action
we can consider equivariant homomorphisms

HomG
Z (Cn(X), A)

and nonequivariant homomorphisms

HomZ(Cn(X), A).

Each will give rise to a chain complex in the usual way. The first of these computes
the top level of the cohomology Mackey functor HA?G(X) and the latter computes the
underlying. Note: the coefficients here are the constant Mackey functor A.

(a) Give C2-equivariant cell structures to Sσ, S2σ, and S1+σ

(b) Compute the cohomology C2-Mackey functors (HF2)?C2
(X) for each of the X above

using the G-cell structures.

(3) Show that for a : S0 → S−σ the inclusion of fixed points, the cofiber is Ca ' (C2)+ in
SpG.

(4) Check that

(HF2)C2
? (F∧t2 ) ∼= (HF2)C2

? (F2)⊗t,

where F∧t2 has the C2-action

(a1, ..., at) 7→ (at, ..., a1).

[Hint: This is a norm. Can use this.]

(5) Try and work out the Bar and twisted Bar spectral sequences computing (HF2)C2
? (K1+σ).

https://arxiv.org/pdf/1910.00664.pdf
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(6) Prove that the diagonal map ∆ : KV → KV ∧KV gives rise to a coproduct

(HF2)C2
? (KV )→ (HF2)C2

? (KV )⊗(HF2) (HF2)C2
? (KV ).

Compute the coproduct on the generators (eσᾱ(n))
J of (HF2)C2

? (K∗σ).

3. Hopf rings and Dieudonné theory

The exercises in this section are meant to serve as an introduction to Hopf rings and Dieudonné
theory. They accompany the results of [2, 11].

3.1. Hopf Rings, Dieudonné Modules, and E∗Ω
2S3 exercises.

(1) Throughout we use the conventions that x = (x0, x1, · · ·xn) and Zp denotes the p-adic
integers. Let

wn = wn(x) = wn(x0, x1, · · · , xn) = xp
n

0 + pxp
n−1

1 + · · ·+ pnxn

be the nth Witt polynomial. Use the Dwork Lemma [2, Lemma 1.1] to deduce there
exists a unique polynomial

ai(x, y) ∈ Zp[x0, x1, · · · , y0, y1]

such that

wn(a0, a1, · · · ) = wn(x) + wn(y)

.
(2) Use the result of the previous exercise to define a coproduct

∆ : Zp[x0, x1, · · · , xn]→ Zp[x0, x1, · · · , xn]⊗ Zp[x0, x1, · · · , xn]

by

∆(xi) = ai(x⊗ 1, 1⊗ x).

Show that this coproduct makes Zp[x0, x1, · · · , xn] a bicommutative Hopf algebra over
Zp. Show also that the Witt polynoimals wn(x) are primative [2, Lemma 1.4].

(3) Read [2, Remark 1.5]
(4) Work through the proof of and definitions involved in [2, Proposition 2.2].
(5) Work through the statement of [2, Lemma 2.5] as well as the two preceding sentences.
(6) Read [2, Lemma 1.5].
(7) Calculate the Dieudonné-module for H∗(BU,F2) following [2, Example 4.12]. You will

need to use [2, Theorem 4.8].
(8) See [2, §10], and in particular, Example 10.4, for a Dieudonné perspective on the Hopf

ring of complex oriented cohomology theories (note: much of the exposition is fairly
technical, but one can see the role of the formal group laws we’ve been studying the past
few weeks fairly directly).

3.2. The connective real K-theory of Brown–Gitler spectra exercises.

(1) Work through the proof that the destabilization function e−∞ : H∗HF → H∗HF∗ is
well-defined (Lemma 6.6).

(2) Work through the proof that the destabilization function e−∞ : H∗E → H∗E⊗H∗B(∞)⊗
Λ of Definition 7.1 is well-defined (Lemma 7.2).

(3) In Section 8, Pearson uses induction to compute ko∗B(2n). There are four cases: 2n ≡
0, 2, 4, 6 mod 8. Try working out any of the cases on your own. Hint: 2n ≡ 0, 4 are
slightly simpler, so I’d suggest starting there.
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4. Hopf rings in cohomology

The exercises in this section are meant to introduce Hopf rings in cohomology. They accom-
pany the results of [1].

4.1. The mod-2 cohomology rings of symmetric groups exercises.

(1) Consider the Hopf ring given by the total symmetric invariants k[x]S [1, see Definition
2.1, Proposition 2.3, and Example 2.6].
(a) Compute the coproduct

∆2,1(x2
1x2x3 + x1x

2
2x3 + x1x2x

2
3)

(b) and the product
(x2

1x2 + x1x
2
2)� x1

.
(c) Read the rest of [1, Example 2.6]

(2) Unpack and generalize the “linear” geometric representatives for homology classes ap-
pearing in [1, Figures 1 and 2] on pages 12 and 13 (in the arXiv version).

5. Hopf algebroids and computations

These exercises are meant to give an introduction to working with Hopf algebroids. They
accompany [13, Appendix A1] and [5].

5.1. Hopf algebroid exercises. These exercises are meant to accompany [13, Appendix A1].

(1) Show Gm(A) = A× is corepresented by k[x±]. Use the group structure of A× to equip
k[x±] with a Hopf algebra structure.

(2) Suppose E∗E is flat as a left π∗(E)-module. Check that the
(a) comultiplication

E∗E → π∗(E ∧ E ∧ E) ∼= E∗E ⊗π∗E E ∗ E,
(b) counit

ε : E∗E → π∗E

induced by the map E ∧ E → E,
(c) left and right unites ηL and ηR corresponding to the left and right module structures

on E∗E corresponding to the left and right module structures on E∗E, and
(d) antipode S : E∗E → E∗E induced by the swap map S : E ∧ E → E ∧ E
satisfy the diagrams defining a Hopf algebroid.

5.2. The C2-equivariant dual Steenrod algebra exercises.

(1) Show that the cofiber S0/an is equivalent to Σ1−nσSn−1
anti +.

(2) Verify that F (Σnσ−1S0/an, X) is equivalent to X/an.
(3) Use the relations

ζ1 = aξ1 + τ0 and a2τ1 = uτ0 + uζ1 + aζ1τ0

in π?F (EC2+, H ∧H) to verify that τ2
0 = uξ1 + aτ0ξ1 + aτ1.
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