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Introduction

This compilation of open and in progress research questions on the topics of Hopf algebras,
rings, and algebroids appearing in algebraic topology is meant for discussion during the eCHT
Research Workshop on Hopf Rings running from 11 AM - 2 PM Eastern Time on June 24 - 28,
2024. A wide range of problems in terms of difficulty, specificity, and topic are described within
this document. It is encouraged to skim the entire document and focus on the questions that
most interest you. Problems are generally grouped by topic:

1. Ravenel–Wilson Hopf Ring Techniques 1
2. Hopf rings and Dieudonné Theory 3
3. Hopf algebras in the group cohomology of arithmetic groups 4
4. Hopf objects and broader structures 4
5. Hopf rings and geometric representatives 5

Research Questions:

1. Ravenel–Wilson Hopf Ring Techniques

(Contributed by Jack Carlisle, Sarah Petersen, and Steve Wilson)

I. Overarching goal: For each ring spectrum, compute the Hopf ring of the homology of
the (non negatively-graded) spaces representing its omega spectrum (see [30, 24, 25, 17,
18, 31, 32, 22] for examples).

A. Go further: Understand the extent to which Hopf ring structures exist in the ho-
mology of the (non negatively-graded)spaces representing the omega spectra of ring
spectra in additional categories such as C2-equivariant and motivic spectra.

1. The story in C2-equivariant and motivic spectra is more complicated as one
generally does not have a Künneth isomorphism.

2. Some important examples, such as theHF2-homology of C2-equivariant Eilenberg–
MacLane spaces [22], and the motivic cohomology of motivic Eilenberg–MacLane
spaces as well as the Hopf ring of algebraic cobordism [1] enjoy the structure
of a Hopf ring.

3. Some outstanding questions related to the HF2-homology of C2-equivariant
Eilenberg–MacLane spaces include:

a. The mod p-homology of classical nonequivariant Eilenberg–MacLane spaces
has a global description. Specifically, Ravenel and Wilson show
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Theorem 1 (Ravenel-Wilson [30]). H∗K∗ is the free Hopf ring on
H∗K0 = H∗[Fp], H∗K1, and H∗CP∞ ⊂ H∗K2 subject to the relation
that e1 ◦ e1 = β1.

Can a similar statement be obtained in the C2-equivariant case? If so,
what specifically, is the global structure of the Hopf rings that do arise?
One may also ask how the Hopf rings here relate to Hill and Hopkins’
work extending Ravenel and Wilson’s construction of a universal Hopf
ring over MU∗ to C2-equivariant homotopy theory [12].

b. How does the stable relation

τ2i = (u+ aτ0)ξi+1 + aτi+1

in the C2-equivariant dual Steenrod algebra

AC2
? = HF2[τ0, τ1, · · · , ξ1, ξ2, · · · ]/(τ2i = (u+ aτ0)ξi+1 + aτi+1)

arise from the unstable calculation of H?KV ?
c. Is it possible to explicitely compute the differentials in the twisted bar

spectral sequences computing H?K∗σ, perhaps in terms of some norm-like
structure?

B. Where all can the Hopf ring structure in the bar spectral sequence be applied?
1. The Hopf ring structure in the bar spectral sequence significantly restricts

potential differentials. For example, differentials must hit primitives in filtra-
tions 0, 1, or 2 (see [30, Sections 7 and 8], [29], and [32, Section 3] for an
introduction).

2. This Hopf ring structure in the bar spectral sequence has been used to compute
the mod p-homology of nonequivariant Eilenberg–MacLane spaces [30, Section
8], the Morava K-theory of Eilenberg–MacLane spaces [25], and the HF2-
homology of C2-equivariant Eilenberg–MacLane spaces [22].

C. Can we compute K(n)∗QS
0, the Morava K-theory of the sphere spectrum (regarded

as a ring spectrum)? Better yet, can we compute the Hopf ring of the Morava K-
theory of all the spaces representing the omega spectrum QS0?

D. Can we compute K(n)∗ER(2)∗, the Morava K-theory of the spaces representing
the Johnson–Wilson theory ER(2)? (We know the mod 2-homology of these spaces
[18].) Note the Morava K-theory of ER(1) is known since its simply BO [17].

E. Find the names for algebra generators given in [17, 31, 32], for instance. Motivation:
names better than “x” are useful in applications.

F. What can we say about the HF2-homology of the zeroth space of MUR, Real cobor-
dism? Can we compute all or some of HF2

C2
? MUR?? Do these computations carry

any Hopf structures?
II. Geometric cobordism and equivariant cobordism of maps. This is an ongoing

research project led by Jack Carlisle and Sarah Petersen. We are looking for up to three
(junior) researchers to join our project. Everyone is welcome to think about it during the
workshop. If you are interested in collaborating after the workshop, please email Jack
Carlisle and Sarah Petersen at jcarlisl@nd.edu and sarahllpetersen@gmail.com to
express interest.

A. Project description: Let A be an abelian group. The cobordism ring of A-
manifolds (unoriented, without boundary) is represented by the A-spectrum mOA,
whose V th space (for V an orthogonal A-representation) is

mOA(V ) = Thom (γ → GrdimV (V ⊕ R∞)) .
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This project aims to prove the cobordism group of A-equivariant maps between
A-manifolds is the mOA-homology of a space representing mOA, similar to the case
for complex cobordism, where the cobordism group of complex maps of codimension
2n is the complex bordism group MU∗MUn, and MU∗MU∗ is the cobordism group
of all maps with even codimension (see [24, discussion between Theorem 2.1 and
Proposition 2.2]).

B. This project is closely related to work of Stong [28, 27], Rinne [26], and Hara [11,
10].

2. Hopf Rings and Dieudonné Theory

(Contributed by Tilman Bauer and Sarah Petersen)

III. To appear (Contributions from Tilman Bauer)
IV. Related equivariant algebra questions (Contributed by Sarah Petersen)

A. Classically, the Witt vectors (or rather a dual notion) play a fundamental role in the
Dieudonné theory associating a category of modules over some ring to category of
graded, connected, bicommutative Hopf algebras over Fp. [8]. In equivariant algebra,
there are several definitions of Witt vectors, each corresponding to a definition of
equivariant topological Hochschild homology (see [2], for instance).

1. What are the various types/definitions of equivariant Witt vectors?
2. Where do they show up in equivariant algebra?
3. Are any of these related to Hopf ring (like) structures appearing in equivariant

Bredon homology?
V. Computations relating to Landweber exactness (Contributed by Sarah Petersen)

A. Nonequivariantly, Dieudonné theory, together with Ravenel’s computation ofBP∗Ω
2S3

[23], can be used to deduce the results of Hopkins–Hunton [13] and Hunton–Turner
[15, 16] on the homology of the spaces representing a Landweber exact theory [8,
Sections 10 and 11]. Equivariantly, in the RO(C2), or more generally RO(G)-graded
setting, there is no obvious Dieudonné theory generalization, owing to the fact that
maps between free E?-modules, where E is a G-ring spectrum may not have free
E?-kernels or cokernels. Is there a way to algebraicize and/or categorify this?

B. Carrick–Guillou–Petersen compute BPR?Ω
ρSρ+1 (in progress), the C2-equivariant

analogue ofBP∗Ω
2S3. Thus we can ask what the equivariant computation ofBPR?Ω

ρSρ+1

tells us, if anything, about the C2-equivariant homology of C2-equivariant analogues
of Landweber exact spectra when the underlying nonequivariant computations are
understood in the language of classical Dieudonné theory.

VI. Equivariant Brown–Gitler spectra (Contributed by Sarah Petersen)
Classically, one of the main reasons it is practical to compute Hopf rings in homol-

ogy by studying the associated ring object in Dieudonné modules is that there is close
relationship between Brown–Gitler spectra and Dieudonné modules (see [8, 20, 19, 21]).
It would be interesting to know to what extent a similar program can be carried out
equivariantly.

A. One way of constructing Brown–Gitler spectra is via Brown representability and
observing that the functor E → DH∗Ω

∞E taking a ring spectrum to the Dieudonné
ring associated to the Hopf algebra H∗Ω

∞E is exact (see [7, 6]). Similarly, in the
C2-equivariant world, is the functor X → DH∗+bσΩ∞X exact for each b? If it is
exact, what are the properties of the represnting spectrum?
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B. Classically, Brown–Gitler spectra can also be constructed from the Snaith sum-
mands of Ω2S3. This was proven by Brown–Peterson at the prime p = 2 [3], par-
tially for odd primes by Ralph Cohen [5], and finally in all cases by Hunter–Kuhn
[14]. In the C2-equivariant setting, do the Snaith summands of ΩρSρ+1 deserve to
be Brown–Gitler spectra? What are their comodules? Can we characterize them
homotopically?

C. Non-equivariantly, two conditions characterize Brown-Gitler spectra. First, these
spectra realize certain sub-comodules of the dual Steenrod algebra. Additionally,
they satisfy a surjectivity condition coming from the geometry involved in Brown–
Gitler’s original construction and witnessed by a certain stage in their Postnikov
construction. It is not currently known if a C2-equivariant analogue of the surjec-
tivity condition [4, Theorem 1.1 (ii)] holds or if there should be some other criterion
determining (integral) Brown–Gitler spectra in the C2-equivariant case. What ho-
motopically characterizes C2-equivariant Brown–Gitler spectra?

D. Can one construct C2-equivariant Brown–Gitler spectra analogously to Brown and
Gitler’s original construction in [4]? Since the C2-equivariant dual Steenrod algebra
is a Hopf algebroid rather than a Hopf algebra, there is no obvious definition of
the antipode s on the C2-equivariant Steenrod algebra. What happens if one uses
Brown–Comenetz duality to define a map playing the role of s? If such spectra
are constructed, do they have useful computational properties? J.D. Quigley and
others have been thinking about this problem, particularly in the motivic setting.

E. Note: David Chan and Sarah Petersen have work in progress using a Thom spectrum
construction for Cp-equivariant Brown–Gitler spectra at all primes p.

3. Hopf algebras in the group cohomology of arithmetic groups

(Contributed by Peter Patz)

VII. To appear

4. Hopf objects and broader structures

(Contributed by Peter May)

VIII. Hopf rings and E∞-structures
A. Given a space X, Ravenel–Wilson Hopf rings techniques restrict attention to the

component of Ω∞Σ∞X. In this sense, these Hopf rings only see a small portion
of the total structure on H∗Ω

∞Σ∞X when we really also have all Dyer–Lashof
operations. Here are some related questions.

1. What additional information can we retain by studying all components of
Ω∞Σ∞X from a Hopf ring perspective when X is not connected?

2. What can one see by looking at Dyer–Lashof operations on all components?
3. Tyler Lawson used secondary power operations to show that the 2-primary

Brown–Peterson spectrum does not admit an En-structure for any n ≥ 12.
Are there primary operations in homology, perhaps visible in the full structure
of Hopf rings, that one can use to deduce the same result?

IX. Hopf algebras as groups in the category of cocommutative coalgebras
A. In the category of cocommutative coalgebras, the tensor product is the cartesian

monoidal product. Thus Hopf algebras that are cocommutative coalgebras are
groups in this category. Thus we have notions such as fixed point groups and
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can seriously look at doing group theory in this setting. A paper by Guillou, May,
and Rubin is a starting point for this perspective [9]. Initial questions include:

1. Analyze the subgroups corresponding to finite subalgebras of the Steenrod
algebra.

2. Is there an algebraic chromatic homotopy theory defined by these subgroups,
that is subgroups of the Steenrod algebra as a Hopf algebra?

B. What about ring theory in the category of cocomutative coalgebras?
1. Cocommutativity plays a critical role in this analysis of Hopf algebras as

groups. What role does cocomoutativity play in the ring structure?
2. More generally, what ring theoretic statements can be made in this category?

Are there useful applications?

5. Hopf Rings and Geometric Representatives

(Contributed by Dev Sinha)

X. The Geometry of Eilenberg–MacLane spaces. This is an open and ongoing a re-
search project lead by Dev Sinha. Hanna Hoffman, Dana Hunter, Kristine Pelatt, Sarah
Petersen and Courtney Thatcher have all contributed at various points. If you are inter-
ested in collaborating after the workshop, please email Dev Sinha at dps@uoregon.edu.

A. Project description. The goals of this project are to write a largely expository pa-
per describing Cartan’s computation of the homology of Eilenberg–MacLane spaces
and its relationship to the homological Leray-Serre spectral sequence, writing up a
Divided powers Hopf ring presentation of the same homology, giving a basis in terms
of graphs, and comparing all of these with the Ravenel–Wilson computation. Ad-
ditionally, all computations should be given fully geometric descriptions (in terms
of generating elements) and be readily accessible, especially to students.

XI. Compute the Morava K-theory of symmetric groups.
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