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Abstract: Fractal symmetry is symmetry across scale. If one looks at a branch of a tree its 

branching pattern is reminiscent of the tree as a whole. Plants exhibit a number of different 

symmetries, including bilateral, rotational, translational, and fractal; deviations from each of 

these types has been associated with organisms developing in stressful environments. Here, 

we explore the utilization and meaning of fractal analysis on annual growth ring production 

in woody plants. Early detection of stress in plants is difficult and the compounding effects 

of multiple or severe stressors can lead to irreversible damage or death. Annual wood 

production was used to produce a time series for individuals from stands classified as either 

high vigor or low vigor (a general measure of health). As a measure of symmetry over time, 

the fractal dimension of each time series was determined and compared among vigor classes. 

We found that individuals obtained from low vigor sites had a significantly lower fractal 

dimension than those from high vigor sites. These results agree with patterns found in a 

variety of other organisms, and we argue that the reduced fractal dimension is related to a 

loss in system complexity of stressed individuals. 
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1. Introduction 

Evaluating plant health remains a challenge despite numerous studies and significant progress in the 

field (see below). There is currently no direct measure for plant health and in fact, there is not even a 

clear definition (reviewed in [1]). What can be agreed upon is that prolonged stress to an organism 

reduces vigor which in turn reduces that individual’s general measure of health. Indicators of plant  

health are no different; typically defined on a comparative basis and measured indirectly through the 

description of observable traits (i.e., crown loss [2], percent damage [3], photosynthetic rates [4], net 

photosynthesis [5], critical wilting [6], insect damage (but see [7]), and various imaging techniques [8]). 

The presence of measurable change, however, implies an advanced stage of health decline which may 

or may not be reversible [9]. One method to detect underlying stress in a population is through 

measurements of developmental stability [10,11]. Although fluctuating asymmetry (random deviations 

from bilateral symmetry) is the most commonly used measurement, others include phyllotaxy, 

equiangular spirals, and fractal dimension [12]. For this study we focus on the fractal dimension of 

annual growth rings in trees. 

Fractals derive their name because in many, but not all, cases they have non-integer dimensions [13,14]. 

True fractals display symmetry of scale, and are infinitely complex. Although natural objects are only 

approximate fractals, fractal geometry and analysis serve an important role in the natural sciences. One 

example is the replacement of smooth, Euclidean shapes historically used in models by more accurate 

fractal shapes, representative of many natural objects such as coast lines, clouds, and tree crowns [15,16]. 

The fractal dimension of an object is often used to describe the roughness of its surface or edge [17,18]. 

This type of analysis describes the ability of the object to fill space, and is useful when considering things 

like photosynthetic surface area (canopy cover [19]), surface gas exchange (leaf or stem surface area [20]), 

and water or nutrient acquisition (root systems [21]). Fractals are also well known for their property of 

self-similarity or scale-independence. The concept of self-similarity is important for parsimony and 

design models (e.g., structure of a fern [22]), developmental stability [12], and the prevalence of self-similar 

systems present in the natural world gives rise to questions regarding order and fundamental rules of 

nature [23]. A third application of fractal analysis describes the roughness of a time series, displaying 

symmetry of scale over time [24,25]. This type of fractal application has been widely used in the medical 

field to monitor heart rate, brain wave, blood pressure, and other biological processes in humans ([26] 

and references therein); however, this technique has only rarely been used to evaluate developmental 

stability in plants [12,27]. 

Correlations between fractal dimension and stress have been observed in numerous animal species. 

The fractal dimension of behavior patterns have been measured and correlated to general health or stress 

in chimpanzees [28], fathead minnows [29], Iberian ibex [30], and domestic hens [31]. In plants, fractal 

analysis has been used to correlate the fractal dimension of physical measurements (self-similarity) to 

stress. Two examples are differential shoot branching patterns across grazing and water stresses in green 

pepper [32], and differential root branching across a nitrogen gradient in corn [33]. Finally, it is worth 

mentioning that fractal measurement and analysis of human system processes over time has been widely 

explored. For example, the fractal dimension of an individual’s heart rate has been shown to be a reliable 

indicator of heart disease in humans [34,35], and the fractal dimension of electroencephalogram (EEG) 
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activity, which detects electrical activity in the brain, has been correlated to Alzheimer’s [36]. In all of 

the cases described above, the fractal dimension of the measured trait decreased with increased stress. 

Lipsitz [26] suggests that healthy organisms have complex systems. He argues that a complex system 

is better able to react to stress, and can do so quickly and on many levels. This idea is not a new one. 

Emlen et al. [37] outline what they refer to as the attractor hypothesis which is a theory that accounts for 

detailed adaptive responses of an organism to their continuously changing environments. In both 

accounts, disease or stress reduces the health of the organism, which can then impose a loss of 

complexity within the system and enhance susceptibility to additional diseases or stressors [26,37].  

In the case of trees, growth depends on several variables, but, for example, is critically dependent on 

water availability. Precipitation is generally inconsistent with a high fractal dimension [38]. Individual 

trees respond to resource availability in a complex way. They grow more and store resources when 

resources available and less when they are limited. This is referred to as environmental buffering and 

the more successful an individual is in this buffering, the healthier it should be. In this study, we use 

fractal analysis to examine the time series produced from annual growth rings in low and high vigor 

trees. We then estimate and compare the fractal dimension of the time series between classifications to 

determine if the fractal dimension of annual growth can be used as an indicator of developmental stability 

in trees. 

2. Methods 

Eighteen trembling aspen (Populus tremuloides Michx.) increment cores were selected from a larger 

sample collected for a study on aspen decline in northern Minnesota. The subset of cores used in this 

study was selected based on age, with only the oldest trees being used due to the requirement of many 

annual rings needed to obtain an accurate estimate of fractal dimension. Tree age ranged from 62 to  

118 years with an average age of 88.6 (Table 1). Samples were collected at breast height (1.4 m) in  

June and July 2009 (incomplete rings from 2009 were excluded from all analysis). All cores were 

prepared according to standard techniques [39], dated by hand, then read and cross-dated using 

COFECHA [40]. For this study, nine cores were selected from three stands classified as high vigor 

stands, and nine cores were selected from three stands classified as low vigor stands (for a total of  

18 cores from six stands in two vigor classes). Vigor classification was based on visual assessment and 

verified with average annual stand growth over the last decade. High vigor stands were characterized by 

an average annual growth greater than 816 mm2·year−1 and low vigor stands by an average annual growth 

less than 452 mm2·year−1 [41]. Annual growth measurements are determined using basal area increment 

measurements. As the diameter of the tree increases, the same amount of wood production is represented 

by smaller and smaller rings. Therefore, ring width is a biased predictor of secondary growth so annual 

wood production, (i.e., basal area increment), is used. 

The set of basal area increment measurements for each tree was computed using ring widths and the 

dplR package for R [42] to produce a time series (Figure 1). The fractal dimension of each time series 

was calculated using a variation of the variogram estimator [25] which utilizes a lag (𝑙) of stationary 

increments. Specifically, if 𝑆(𝑡, 𝑙) is the sample standard deviation of the time series from time 𝑡 to time 

𝑡 + 𝑙 − 1 and 𝑅(𝑡, 𝑙) is the range of the time series observations from time 𝑡 to time 𝑡 + 𝑙 − 1, then 
𝑅(𝑡,𝑙)

𝑆(𝑡,𝑙)
 

is known as the rescaled range. If we then let 𝑅(𝑙) be the average of all the rescaled range values for a 
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given lag 𝑙, then the Hurst coefficient can be calculated by determining the slope of the line obtained 

from plotting log(𝑅(𝑙)) against log(𝑙) for multiple values of 𝑙 (Figure 2 [43–45]). The Hurst coefficient 

(H) is directly related to fractal dimension (FD) by the equation FD = 2 − 𝐻 for a given time series. 

Below is a summary of the algorithm used to estimate the fractal dimension of a tree core: 

(1) Measure annual tree ring widths and determine corresponding tree diameters (DBH) by 

commutatively adding ring radii. 

Calculate annual basal area (BA) and produce a time series. 

BA =  π(
DBH

2
)2 (1) 

(2) For each time lag (i.e., scale) l = 3, 4, 5, …, 90. 

Calculate the standard deviation, 𝑆(𝑡, 𝑙), and range, 𝑅(𝑡, 𝑙), of the time series observations from year 

t = 1 to year t = l.  

Repeat for all values of t applicable for the time series (i.e., 𝑡 + 𝑙 − 1 = tree age).  

Calculate the rescaled range, 
𝑅(𝑡,𝑙)

𝑆(𝑡,𝑙)
, for each applicable t and the average rescaled range, 𝑅(𝑙) ,  

for each lag l. 

𝑅(𝑙) =
1

𝑡
 ∑

𝑅(𝑡, 𝑙)

𝑆(𝑡, 𝑙)
𝑡

 (2) 

(3) Plot log (𝑅(𝑙)) against log (𝑙) for all values of 𝑙 and determine the slope of the line using least 

squares. The Hurst coefficient, H, is the slope of this line. 

(4) Calculate the fractal dimension, FD, using the equation: FD = 2 − 𝐻. 

To determine if fractal dimension differed between vigor classes and if tree age had an effect on the 

results we used an ANCOVA with fractal dimension as the dependent variable, vigor classification as 

the independent variable, and age as the covariate (Table 1). 

Table 1. Fractal dimensions (FD) and age of 18 aspen (Populus tremuloides) trees. Nine 

individuals came from stands of high vigor (High) and nine from stands of low vigor (Low). 

Tree 
FD Age 

High Low High Low 

1 1.802 1.728 79 96 

2 1.736 1.741 100 100 

3 1.818 1.779 72 91 

4 1.805 1.773 116 86 

5 1.829 1.729 118 89 

6 1.814 1.779 118 90 

7 1.819 1.728 71 73 

8 1.756 1.744 79 87 

9 1.766 1.824 68 62 
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Figure 1. Time series data for an aspen (P. tremuloides) individual from a low vigor stand 

(FD = 1.741) and an individual from a high vigor stand (FD = 1.818). The difference in 

roughness of the two time series can be seen. The high vigor tree has more peaks and troughs, 

but generally with smaller amplitude compared to the low vigor tree. 

  

(a) (b) 

Figure 2. Log-log graph and corresponding slope (α Hurst coefficient) and R2 values of the 

average stationary increment (or lag), l vs. the average rescaled range R(l) for all individuals 

in high and low vigor classes. (a) Low vigor, α = 0.227, R2 = 0.938; (b) High vigor,  

α = 0.1687, R2 = 0.804. 

3. Results 

Low and high vigor trees display significantly different fractal dimensions (Table 2). Low vigor trees 

have an average fractal dimension of 1.758 ± 0.033 while high vigor trees have an average fractal 

dimension of 1.794 ± 0.033. The first ANCOVA model included age, vigor, and the interaction effect 

between age and vigor classification (Figure 2). Both age and the interaction between age and vigor 

classification were not significant (F = 0.045, P = 0.835 and F = 2.83, P = 0.114 respectively) while 

classification group was significant (F = 5.561, P = 0.033). The lack of a significant interaction effect 

indicates that the regression between age and fractal dimension is similar for both low and high vigor 

groups (Figure 3). A model without the interaction effect was then run. Again, age was not significant 

(F = 0.040, P = 0.844) while classification was (F = 4.95, P = 0.042). Finally, an ANOVA was used to 
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compare the two models (F = 2.835, P = 0.1144). Insignificant results indicate that the removal of the 

interaction effect does not significantly affect the fit of the model. The only significant effect on the 

fractal dimension of an individual was the vigor classification group it was assigned to. 

Table 2. One-way analysis of covariance with fractal dimension as the dependent variable, 

vigor classification as the independent variable, and age as the covariate. * indicates values 

significant at α = 0.05. 

Source of Variation df Sum of Squares F P 

Age 1 4.61 × 10 −5 0.040 0.844 

Vigor Classification 1 5.67 × 10 −3 4.954 0.042 * 

Residuals 15 1.72× 10 −2 – – 

 

Figure 3. A scatter plot of tree age versus fractal dimension (FD) and corresponding 

regression lines for both high and low vigor trees. Despite appearances, there is no significant 

difference between the two slopes (High slope = 0.0003, low slope = −0.0015, F = 2.83,  

P = 0.1144), indicating that the regression between age and FD is similar for both vigor 

classifications and there is no association between tree age and fractal dimension. 

4. Discussion 

Our results indicate that stressed trees display a lower fractal dimension in their growth patterns 

compared to healthy trees and coincides with previous studies across a variety of organisms. One way 

to compare results among studies is to calculate the ratio between the Hurst coefficient (slope of the 

log(l)-log(R(l)) graph) of healthy and stressed groups. In this study the average Hurst coefficient of the 

high vigor group was 0.853 times that of the low vigor group (HH/HL), a value comparable to values 

found in previous studies on animal behavior (0.803 [28]; 0.884 [29]; 0.74 and 0.798 [30]), plant growth 
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(0.854 [32]; 0.871 [33]), and time series analysis of heart rhythms (the difference between healthy and 

various diseases ranged from 0.79 to 0.941 [36]). 

While average growth rates confirmed our vigor classifications at the stand level, a decline in growth 

within an individual tree does not necessarily translate to a decline in health. Growth of a complex 

organism like a tree requires a suite of interconnected physical (i.e., apical and lateral growth, nutrient 

transportation, leaf and root production), chemical (i.e., hormone production and regulation, 

photosynthesis, respiration), and biological (i.e., dormancy, reproduction) processes. To help visualize 

how this complex system of processes may operate imagine a series of overlapping sine curves where 

the state space contains all vital life processes and the final output is growth. A system in its most basic 

state can be represented by a single curve (i.e., carbon sequestration). Alone, however, this process 

cannot support the tree. As the system becomes more complex, the number of curves increases 

(representing processes such as water and nutrient uptake and transport, respiration, and hormone 

production), each with a different frequency or amplitude. This complexity allows the organism to 

function smoothly; curves compensate for each other as peaks and troughs overlap. Consider that each 

curve contributes in some way to our final output which is growth. When there is only one curve, growth 

occurs in fits and starts. When there are many curves, growth occurs at a fairly constant and close to 

ideal rate, although the curves vary continuously. (It is important to understand that the ideal growth rate 

will itself fluctuate based on the environment and available resources). When stress is introduced to the 

system, energy is required to alleviate that stress-energy that must come from somewhere within the 

system. As a result, the system experiences a loss in complexity, which in turn affects growth, until  

the stress is relieved and the system recalibrates [9,46]. Based on this idea, the theory proposed by  

Emlen et al. [37] and Lipsitz [26], and evidence provided by previous studies, our results suggest that 

the fractal dimension of the tree ring data reflects an individual measure of developmental instability. 

The lower fractal dimension seen in the low vigor trees could be indicative of a lower state of system 

complexity (as we observed) due to stress which has diminished those individuals’ ability to respond 

dynamically to its environment. In another fundamental sense, the loss of dimension means literally a 

loss of the symmetry across time scales. 

Growth and wood production (or biomass in general) is often used as a measure of health, and is 

thought to be a particularly sensitive indicator of stress [47]. Other energy and resource sinks including 

leaf, bud, and root production, maintenance, and storage tissue production all take precedence over 

secondary stem growth [48]. Reduced secondary growth is expected if there is a general lack of resources 

or if extra resources are required to fight disease, regenerate after defoliation, or otherwise respond to a 

disturbance. However, if there were little or no lasting effects of a stressful year on the individual, we 

expect that wood production would more or less reflect the environmental conditions of the year in which 

it was produced. In fact, this is often the case and a high correlation between annual precipitation and 

growth is a necessary assumption when tree ring chronologies are used to reconstruct historic climate 

data [49,50]. However, there are many studies that document the long term influence on growth by a 

single climatic [51] or herbivory [52] event (also see [1] and references therein). 

The focus of this study was not to evaluate the mechanisms influencing stand vigor, only to examine 

the fractal dimensions within different vigor classes. However, the six stands represented in this study 

are similar with respect to soil, weather, and elevation; there is no natural gradient with which to further 

classify them, and all things being equal, we would expect the annual growth, vigor, and fractal 
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dimensions to be similar. Clearly, differences among local site conditions exist, some of which are 

responsible for the variation in stand vigor. Differential competition, insect damage, and local weather 

patterns are all possible factors affecting stand vigor. For this study, however, we did not identify which 

factor(s) affect stand vigor but instead focused on the correlation between fractal dimension and stand 

vigor class. 

5. Conclusions 

Our results support the idea that healthy individuals exhibit higher system complexity compared to 

stressed individuals which can be measured by fractal analysis. Higher system complexity in healthy 

individuals allows for more efficient reactions to a fluctuating environment, maintaining homeostasis. 

Individuals from stands that had low vigor were not producing consistently smaller basal area increments 

compared to individuals from high vigor stands, but the pattern with which wood was produced differed. 

A healthy individual from a high vigor stand produced wood dynamically resulting in a rough time 

series; differential production between years presumably correlates well with available resources.  

A stressed individual from a low vigor stand produced wood in a less dynamic pattern, resulting in a 

time series that was less rough. If our interpretation is correct, the fractal dimension of tree ring growth 

provides a measure of developmental stability over time in woody plants. 

Acknowledgments 

The authors would like to thank John H. Graham and an anonymous reviewer for their comments 

which greatly improved this manuscript. The data used in this study was collected under a Base 

Evaluation Monitoring Grant by the Forest Health Monitoring Program of the US Forest Service. 

Support for JPS was provided by a Japanese Society for Promotion of Science Postdoctoral Fellowship. 

Author Contributions 

JPS collected and processed tree cores, did the analysis and wrote the paper. DMK and JBB obtained 

funding for the collection of data and contributed knowledge of field site locations. DCF helped write 

the paper and made conceptual contributions. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: 

A review. Eur. J. For. Res. 2005, 124, 319–333. 

2. Torelli, N.; Shortle, W.C.; Cufara, K.; Ferlin, F.; Smith, K.T. Detecting changes in tree health and 

productivity of silver fir in Slovenia. Eur. J. For. Pathol. 1999, 29, 189–197. 

3. Duchesne, L.; Ouimet, R.; Houle, D. Basal area growth of sugar maple in relation to acid deposition, 

stand health, and soil nutrients. J. Environ. Qual. 2002, 31, 1676–1683. 



Symmetry 2015, 7 362 

 

 

4. Taylor, O.C.; Cardiff, E.A.; Mersereau, J.D. Apparent photosynthesis as a measure of air pollution 

damage. J. Air Pollut. Control Assoc. 1965, 15, 171–173. 

5. Myhre, A.; Forberg, E.; Aarnes, H.; Nilsen, S. Reduction of net photosynthesis in oats after 

treatments with low concentrations of ozone. Environ. Pollut. 1988, 53, 265–271. 

6. Denmead, O.T.; Shaw, R.H. The effects of soil moisture stress at different stages of growth on the 

development and yield of corn. Agron. J. 1960, 52, 272–274. 

7. Larsson, S. Stressful times for the plant stress—Insect performance hypothesis. Oikos 1989, 56, 

277–283. 

8. Chaerle, L.; van der Straeten, D. Seeing is believing: Imaging techniques to monitor plant health. 

Biochim. Biophys. Acta 2001, 1519, 153–166. 

9. Pedersen, B.S. The role of stress in the mortality of midwestern oaks as indicated by growth prior 

to death. Ecology 1998, 79, 79–93. 

10. Freeman, D.C.; Graham, J.H.; Emlen, J.M. Developmental stability in plants: Symmetries, stress, 

and epigenesis. Genetica 1993, 89, 97–119. 

11. Freeman, D.C.; Graham, J.H.; Emlen, J.M.; Tracy, M.; Hough, R.A.; Alados, C.L.; Escos, J.  

Plant developmental instability: New measures, applications, and regulation. In Developmental 

Instability: Causes and Consequences; Polack, M., Ed.; Oxford University Press: New York, NY, 

USA, 2002; pp. 927–1027. 

12. Graham, J.H.; Freeman, D.C.; Emlen, J.M. Developmental Stability: A Sensitive Indicator of 

Populations under Stress; Landis, W.G., Hughes, J.S., Lewis, M.A. Eds.; ASTM Special Technical 

Publication 1179; American Society for Testing and Materials: Phiadelphia, PA, USA, 1993;  

pp. 136–158. 

13. Mandlebrot, B.B. Fractals, Form, Chance, and Dimension; Freeman: San Francisco, NC,  

USA, 1977. 

14. Mandlebrot, B.B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1983; pp. 1–58. 

15. Voss, R.F. Random fractals: Self-affinity in noise, music, mountains, and clouds. Physica D 

Nonlinear Phenom. 1989, 38, 362–371. 

16. Zeide, B.; Pfeifer, P. A method for estimation of fractal dimension of tree crowns. For. Sci. 1991, 

37, 1253–1265. 

17. Burrough, P.A. Fractal dimensions of landscapes and other environmental data. Nature 1981, 294, 

240–242. 

18. Theiler, J. Estimating fractal dimension. J. Opt. Soc. Am. 1989, 7, 1056–1073. 

19. Critten, D.L. Fractal dimension relationships and values associated with certain plant canopies.  

J. Agric. Eng. Res. 1997, 67, 61–72. 

20. Kurth, W. Morphological models of plant growth: Possibilities and ecological relevance.  

Ecol. Model. 1994, 75, 299–308. 

21. Tatsumi, J.; Yamauchi, A.; Kono, Y. Fractal analysis of plant root systems. Ann. Bot. 1989, 64, 

499–503. 

22. Prusinkiewicz, P.; Hanan, J. Linenmayer Systems, Fractals, and Plants; Springer-Verlag: New 

York, NY, USA, 1989. 

23. Stevens, P. Patterns in Nature; Atlantic Monthly Press Book: Boston, MA, USA, 1974. 



Symmetry 2015, 7 363 

 

 

24. Bruno, R.; Raspa, G. Geostatistical characterization of fractal models and surfaces. Geostatistics 

1989, 1, 77–89. 

25. Gneiting, T.; Sevcikova, H.; Percival, D.B. Estimators of fractal dimension: Assessing the 

roughness of time series and spatial data. Stat. Sci. 2010, 27, 247–277. 

26. Lipsitz, L.A. Dynamics of Stability: The physiological basis of functional health and frailty.  

J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, 115–125. 

27. Graham, J.H.; Duda, J.J.; Brown, M.L.; Kitchen, S.; Emlen, J.M.; Malol, J.; Bankstahl, E.;  

Krzysik, A.J.; Balbach, H.; Freeman, D.C.; et al. The effects of drought and disturbance on the 

growth and developmental instability of loblolly pine (Pinus taeda L.). Ecol. Indic. 2012, 20,  

143–150. 

28. MacIntosh, A.J.J.; Alados, C.L.; Huffman, M.A. Fractal analysis of behavior in a wild primate: 

Behavioural complexity in health and disease. J. R. Soc. Interface 2011, 8, 1497–1509. 

29. Alados, C.L.; Weber, D.N. Lead effects on the predictability of reproductive behavior in fathead 

minnows (Pimephales promelas): A mathematical model. Environ. Toxicol. Chem. 1999, 18,  

2392–2399. 

30. Alados, C.L.; Escos, J.; Emlen, J.M. Fractal structure of sequential behavior patterns: An indicator 

of stress. Anim. Behav. 1996, 51, 437–443. 

31. Rutherford, K.M.D.; Haskell, M.J.; Glasbey, C.; Jones, R.B.; Lawrence, A.B. Detrended fluctuation 

analysis of behavioural responses to mild acute stressors in domestic hens. Appl. Anim. Behav. Sci. 

2003, 83, 125–139. 

32. Escos, J.M.; Alados, C.L.; Emlen, J.M. Fractal structures and fractal functions as disease indicators. 

Oikos 1995, 74, 310–314. 

33. Eghball, B.; Settimi, J.R.; Maranville, J.W.; Parkhurst, A.M. Fractal analysis for morphological 

description of corn roots under nitrogen stress. Agron. J. 1993, 85, 287–289. 

34. Acharya, R.U.; Bhat, P.S.; Kannathal, N.; Rao, A.; Lim, C.M. Analysis of cardiac health using 

fractal dimension and wavelet transformation. ITBM-RBM 2005, 26, 133–139. 

35. Qtsuka, K.; Cornelissen, G.; Halberg, F. Circadian rhythmic fractal scaling of heart rate variability 

in health and coronary artery disease. Clin. Cardiol. 2009, 20, 631–638. 

36. Jelles, B.; van Birgelen, J.H.; Slaets, J.P.J.; Hekster, R.E.M.; Jonkman, E.J.; Stam, C.J. Decrease  

on non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin. 

Neurophysiol. 1999, 110, 1159–1167. 

37. Emlen, J.M.; Freeman, D.C.; Mills, A.; Graham, J.H. How organisms do the right thing: The 

attractor hypothesis. Chaos 1998, 8, 717–726. 

38. Selvi, T.S.; Selvaraj, S.R. Fractal Dimension Analysis of Northeast Monsoon of Tmil Nadu.  

Univers. J. Environ. Res. Technol. 2011, 1, 219–221. 

39. Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 

2010. 

40. Holmes, R.L. Program COFECHA: Version 3; The University of Arizona: Tucson, AZ, USA, 1992. 

41. Sakai, A.K.; Burris, T.A. Growth in male and female aspen clones: A twenty-five year longitudinal 

study. Ecology 1985, 66, 1921–1927. 

42. Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26,  

115–124. 



Symmetry 2015, 7 364 

 

 

43. Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116,  

770–808. 

44. Mandlebrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of  

non-cyclic long run statistical dependence. Water Resour. Res. 1969, 5, 967–988. 

45. Davies, R.B.; Hart, D.S. Tests for Hurst effect. Biometrika 1987, 74, 95–101. 

46. Manion, P.D. Tree Disease Concepts; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. 

47. Waring, R.H.; Pitman, G.B. Modifying lodgepole pine stands to change susceptibility to mountain 

pine beetle attack. Ecology 1985, 66, 889–897. 

48. Waring, R.H. Characteristics of trees predisposed to die. BioScience 1987, 37, 569–573. 

49. Fritts, H.C. Tree rings and Climate; Academic Press: New York, NY, USA, 1976. 

50. Grissino-Mayer, H.D. A 2129-year reconstruction of precipitation for northwestern New Mexico, 

USA. In Tree Rings, Environment, and Humanity; Dean, J.S., Meko, D.M., Swetnam, T.W., Eds.; 

Radiocarbon, Department of Geosciences, University of Arizona: Tucson, Arizona, USA, 1996;  

pp. 191–204.  

51. Lapointe-Garant, M.P.; Huang, J.G.; Geaizquierdo, G.; Raulier, F.; Bernier, P.; Berninger, F. Use 

of tree rings to study the effect of climate change on trembling aspen in Quebec. Glob. Change Biol. 

2009, 16, 2039–2051. 

52. Speed, J.D.M.; Austrheim, G.; Hester, A.J.; Mysterud, A. Browsing interacts with climate to 

determine tree-ring increment. Funct. Ecol. 2011, 25, 1018–1023. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


