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Abstract

This is an expository paper on the class number of a finite field extension of Q, intended as a survey
of work done on the class group and class number of a number field. We first develop some background to
gain an understanding of what the class number is, then proceed to build tools to discuss computations
of the class number, and, finally, we discuss work primarily done by Gauss on binary quadratic forms
and the form class group to learn about the foundations of the class number.

1 Understanding What the Class Number Is

1.1 Background Technology

Definition 1.1.1. A number field (or algebraic number field) F is a finite field extension of Q. As such, F
may be viewed as a finite-dimensional vector space over Q, with finite degree [F : Q] over Q.

• If F has degree 2 over Q, F is called a quadratic field. Examples of quadratic fields include Q(
√

7),
Q(
√

8) = Q(
√

2), Q(ω) = Q(
√
−3), where ω is a primitive cube root of unity, and Q(

√
−5). Every

quadratic field may be written in the form Q(
√
d), where d 6= 0, 1 is a square-free integer. If d < 0,

Q(
√
d) is called an imaginary quadratic field, and if d > 0, Q(

√
d) is called a real quadratic field.

• If F has degree 3 over Q, F is called a cubic field. By the primitive element theorem, any cubic field
may be written in the form Q(α) for some α ∈ F such that the minimal polynomial of α over Q has
degree 3. Examples of cubic fields include Q( 3

√
2) and Q( 3

√
5).

• If F is of the form Q(ζn), where ζn is a primitive n-th root of unity, F is called a cyclotomic field, and
F has degree φ(n) over Q.

• Most generally, if f(x) is an irreducible polynomial of degree n over Q, then F = Q[x]/(f(x)) is a
number field of degree n over Q. By the primitive element theorem, F may be written in the form
Q(α) for some α ∈ F such that the minimal polynomial of α has degree n over Q.

Our main focus will be on quadratic fields, but we will also include some results related to cubic and
cyclotomic fields.

Definition 1.1.2. The ring of integers OK of a number field K is the subring of K consisting of algebraic
integers in K. That is, OK is the set of elements α ∈ K such that α is a root of a monic polynomial in Z[x].
As such, α ∈ K will belong to OK if its minimal monic polynomial over Q is in Z[x]. These elements are
also called the integral elements of K over Z, forming the integral closure of Z in K, which contains Z as a
subring. OK may be viewed as a finitely-generated Z-module with an integral basis b1, b2, ..., bn ∈ OK such
that any element in OK can be written as a linear combination of basis elements with coefficients in Z.

When defining the class number of a number field, it will be necessary to think about certain ideals in this
ring.
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Proposition 1.1.3. The ring of integers of the quadratic field K = Q(
√
d) is given by

OK =

{
Z[
√
d] d ≡ 2, 3 (mod 4)

Z[ 1+
√
d

2 ] d ≡ 1 (mod 4)

, where d 6= 0, 1 is a square-free integer. (Theorem 3.4, [6])

We quickly note that it is not possible that d ≡ 0 (mod 4), since this would violate d being square-free.

Proving the above proposition amounts to first showing that OK contains Z[ 1+
√
d

2 ] if d ≡ 1 (mod 4) (OK

contains Z, contains 1+
√
d

2 as it is a root of f(x) = x2 − x+ 1−d
4 , and OK is a ring, so this follows), and

contains Z[
√
d] if d ≡ 2, 3 (mod 4) (which holds since OK contains Z, contains

√
d as it is a root of

g(x) = x2 − d, and OK is a ring). We simply show from here that there are no more integral elements of K
over Z, which uses no more technology than that of minimal polynomials and elementary modular
arithmetic.

Remark 1.1.4. If ζn be a primitive n-th root of unity and K = Q(ζn), OK = Z[ζn] [15]. One can also show
that, if d is an integer that is not a perfect cube and K is the cubic field Q( 3

√
d), OK = Z[ 3

√
d].

Definition 1.1.5. A Dedekind domain R is an integral domain such that R is Noetherian (that is, if we
have ideals I1 ⊆ I2 ⊆ · · ·Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · · of R, then there is some n ∈ N such that In = In+1),
R is integrally closed in its field of fractions S (that is, R equals the integral closure of R in S), and every
nonzero prime ideal of R is maximal.

• One can show that, if R is a Dedekind domain, then R is a unique factorization domain if and only if
R is a principal ideal domain, because any UFD S is a PID if and only if every nonzero prime ideal of
S is maximal [5].

The setting of Dedekind domains is of great importance for us, because if K is a number field, then OK is
a Dedekind domain (see Theorem 3.1.3 of [3]). Further, due to this, every ideal in OK uniquely factors as a
product of prime ideals (due to Theorems 12.2 and 12.3 of [12]).

Definition 1.1.6. If K is a number field, and J ⊆ K, J is a fractional ideal of OK if aJ = {aj : j ∈ J}
is an ideal of OK for some a ∈ OK such that a 6= 0. If aJ is a principal ideal of OK , then J is principal
fractional ideal of OK . ([12], Definition 12.4)

We will see that it is these ideals of OK that drive the definition of the class number of K.

If J is a (principal) fractional ideal of OK , some authors may simply write that J is a (principal) fractional
ideal of K. Further, any ideal of OK is a fractional ideal.

1.2 The Class Number

With all of the machinery in Section 1.1, we are now ready to introduce the notion of the class group and
corresponding class number.

Definition 1.2.1. The class group (often called the ideal class group to distinguish from the form class
group, which we discuss in Section 3) of a number field K (or of OK) is the quotient group ClK (or ClOK or
Cl(K)) given by ClK = (fractional ideals of OK)/(principal fractional ideals of OK). The order of the class
group is called the class number of K. ([12], Definition 12.9)

It is important to note that the class number of a number field K is always finite. Class numbers are
typically studied in the context of a number field, which is our primary focus. However, one may consider
the class number of a general Dedekind domain, and I’m told by Andrew Salch that there are a relatively
small subset of mathematicians such as Frank Okoh that also study the class number of non-Dedekind
domains.
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Example 1.2.2. Suppose that the class number of a number field K is 1. Then, every fractional ideal of
OK is a principal fractional ideal of OK . Since any ideal of OK is a fractional ideal, it follows that every
ideal of OK is a principal ideal of OK , and OK is a principal ideal domain. This implies OK is actually
a unique factorization domain, since OK is a Dedekind domain. This leads to an important statement : a
number field K has class number 1 ⇐⇒ OK is a PID ⇐⇒ OK is a UFD.

Continuing with this train of thought, it turns out that the larger the class number of a number field K,
the greater the failure of OK to be a principal ideal domain, or, equivalently, a unique factorization
domain. In this way, the importance of the class number of K lies in its ability to measure the failure of
OK to be a unique factorization domain.

Computations of the class group and class number for a number field K are frequently done using algebraic
tools such as the Minkowski bound, the trace and norm of elements α ∈ K, and the discriminant of K. In
the next section, we introduce these tools and use them to handle some of these computations.

2 Calculating the Class Number

2.1 Computational Tools

A nice general reference for these computational tools is contained in Sections 3 and 4 of [10].

Proposition 2.1.1. If K is a number field with [K : Q] = n, there are exactly n embeddings of K into C.

Let’s convince ourselves of this. By the primitive element theorem, K = Q[x]/(f) = Q(γ) for some γ ∈ K
such that the minimal polynomial f of γ over Q has degree n. As an irreducible polynomial over C, this
minimal polynomial has n distinct roots in C. Letting β1, β2, ..., βn be the roots of these roots, the n
unique embeddings from K into C are given by σi : Q[x]/(f) ↪→ C : x 7−→ βi, where 1 ≤ i ≤ n. There are
no more distinct embeddings than these n, since the image of x must be one of the βi.
We will continue to denote the n distinct embeddings of a number field of degree n over Q into C by
σ1, σ2, ..., σn. If α ∈ K, σ1(α), σ2(α), ..., σn(α) are called the conjugates of α. σ is real if σ(K) ⊂ R and
complex if σ(K) ⊂ C.

If K is a number field with [K : Q] = n, and α, β ∈ K, one can consider the multiplication map
α : K −→ K : β 7−→ αβ. The characteristic polynomial of this map is given by Pα(x) = Πn

i=1(x− σi(α)),
and it has coefficients lying in Q. Recalling that the trace of a linear operator is the sum of its eigenvalues
and the determinant of the operator is the product of the eigenvalues, this polynomial is precisely what
gives rise to the following definition.

Definition 2.1.2. Let K be a number field, and let α ∈ K. The norm of α is given by N(α) = NK/Q(α) =
Πn
i=1σi(α) ∈ Q, and the trace of α is given by Tr(α) = TrK/Q(α) =

∑n
i=1 σi(α) ∈ Q.

In particular, the trace is additive and the norm is multiplicative – that is, for α, β ∈ K,
Tr(α+ β) = Tr(α) + Tr(β) and N(αβ) = N(α)N(β). The trace is also Q-linear.

Definition 2.1.3. Let K be a number field such that [K : Q] = n, with b1, b2, ..., bn an integral basis for
OK . Then the discriminant of K is given by

∆K =

∣∣∣∣∣∣∣∣∣∣∣∣

σ1(b1) σ1(b2) · · · σ1(bn)
σ2(b1) σ2(b2) · · · σ2(bn)
· · · · · ·
· · · · · ·
· · · · · ·

σn(b1) σn(b2) · · · σn(bn)

∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣∣

Tr(b1b1) Tr(b1b2) · · · Tr(b1bn)
Tr(b2b1) Tr(b2b2) · · · Tr(b2bn)
· · · · · ·
· · · · · ·
· · · · · ·

Tr(bnb1) Tr(bnb2) · · · Tr(bnbn)

∣∣∣∣∣∣∣∣∣∣∣∣
∈ Q
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Example 2.1.4.
(a) Let K be a quadratic field Q(

√
d), and consider α = a+ b

√
d ∈ K. There are 2 distinct embeddings of K

into C, given by σ1(α) = a+ b
√
d and σ2(α) = a− b

√
d (and, note that, if K is imaginary, both embeddings

are complex, while if K is real, neither are complex). This gives Tr(α) = (a + b
√
d) + (a − b

√
d) = 2a

and N(a + b
√
d) = (a + b

√
d)(a − b

√
d) = a2 − db2. If d ≡ 1 mod 4, an integral basis for OK is given by

b1 = 1, b2 = 1+
√
d

2 , and we get ∆K =

∣∣∣∣∣1 1+
√
d

2

1 1−
√
d

2

∣∣∣∣∣
2

= d. If d ≡ 2, 3 (mod 4), an integral basis for OK is given

by b1 = 1, b2 =
√
d, and we get ∆K =

∣∣∣∣2 0
0 2d

∣∣∣∣ = 4d. Thus, we get a useful formula for the discriminant of

the quadratic field Q(
√
d), given by ∆K =

{
4d d ≡ 2, 3 (mod 4)

d d ≡ 1 (mod 4)
.

(b) Let K = Q( 3
√
d) = Q(θ) be a cubic field, where d is not a perfect cube, and consider α = a + bθ +

cθ2 ∈ K. There are 3 distinct embeddings of K into C, given by σ1(α) = α, σ2(α) = a + bζ3θ + cζ2
3θ

2

and σ3(α) = a + bζ2
3θ + cζ3θ

2, where ζ3 is a cube root of unity ⇒ Tr(α) = σ1(α) + σ2(α) + σ3(α) =
3a+ bθ(1 + ζ3 + ζ2

3 ) + cθ2(1 + ζ3 + ζ2
3 ) = 3a, and N(α) = σ1(α) · σ2(α) · σ3(α) = a3 + 2b2 + 4c3 + 6abc. An

integral basis for OK is given by b1 = 1, b2 = 3
√
d and b3 =

3
√
d2. Thus, we get ∆K =

∣∣∣∣∣∣
3 0 0
0 0 3d
0 3d 0

∣∣∣∣∣∣ = −27d2.

(c) Let K = Q(ω), where ω is a primitive 5-th root of unity. Since [K : Q] = φ(5) = 4, there are 4
distinct embeddings of K into C, given by σ1 : ω 7−→ ω, σ2 : ω 7−→ ω2, σ3 : ω 7−→ ω3, and σ4 : ω 7−→ ω4. Let
α = a+bω+cω2+dω3+eω4 ∈ K. Then, Tr(α) = (a+bω+cω2+dω3+eω4)+(a+bω2+cω4+dω+eω3)+(a+
bω3 +cω+dω4 +eω2)+(a+bω4 +cω3 +dω2 +eω1) = 4a+(b+c+d+e)(ω+ω2 +ω3 +ω4) = 4a−(b+c+d+e).
Calculating N(α) = σ1(α) · σ2(α) · σ3(α) · σ4(α) is algebraically much more complicated. An integral basis

for OK is given by b1 = 1, b2 = ω, b3 = ω2, and b4 = ω3. Thus, we get ∆K =

∣∣∣∣∣∣∣∣
1 ω ω2 ω3

1 ω2 ω4 ω
1 ω3 ω ω4

1 ω4 ω3 ω2

∣∣∣∣∣∣∣∣
2

= 125. In

fact, if K is the number field Q(ζn), where ζn is a primitive n-th root of unity (n ≥ 3), this agrees with the

formula for the discriminant of K, given by ∆K = (−1)φ(n)/2 nφ(n)

Πp|npφ(n)/(p−1) .

The discriminant of a number field K is necessary to use a primary tool for computing the class number of
K, the Minkowski bound.

Definition 2.1.5. Let K be a number field of degree n over Q. Then, every ideal class in ClK contains an
integral ideal in OK of norm less than or equal to Minkowski’s constant MK =

√
|∆K |( 4

π )r2 n!
nn , where r2

is half of the number of complex field embeddings of K into C. This is known as Minkowski’s bound. As a
consequence, ClK is generated by prime ideals of norm at most MK .

The norm of an ideal I ⊆ OK above refers to its absolute norm, N(I) = |OK/I|.

An important consequence of Minkowski’s bound (which we mentioned earlier in this paper) is that, if K is
a number field, as the number of integral ideals in OK of a specified norm is finite, the class group of K
must have finite order (see 5.3.6 of [3]).

We briefly note that the Hurwitz constant of a number field K serves as another upper bound to help compute
the class number of K, and can be computed from an integral basis of K. However, the bound one achieves
from Minkowski’s constant is more accurate. Ireland-Rosen’s bound is another less robust bound to assist
with class number calculations.

Remark 2.1.6. Recall that if K = Q(α) is a number field, K contains Q and OK contains Z. For a prime
ideal p of OK , p ∩ Z is a prime ideal of Z. That is, p ∩ Z = (p) for some prime number p, and we say that
the prime p of OK lies over (p). More generally, prime ideals of an extension field lie over prime ideals of
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the ground field. Thus, since prime ideals in Q are generated by prime numbers, to help determine prime
ideals of OK , we look to determine prime ideal factorizations in K.

For a given (p), we can often find the primes p in OK lying over (p) by factoring the minimal polynomial
f of α over Q into irreducible factors mod p. The ideal p =< p, h(α) > in OK lies over (p), then, if h is
one of these irreducible factors. This correspondence between primes in OK lying over (p) and irreducible
factors of f modulo p is one consequence of theory developed by Dedekind. Even when this does not suffice,
we may still find primes p of OK lying over (p) by finding prime ideals of OK/pOK and pulling these back
to OK [13].

Remark 2.1.7. If p is prime in OK , its norm N(P ) is |OK/p|. The ideal pOK is the product of prime ideals
with norm a power of p, and each power is determined by the ramification index of the corresponding prime
ideal. Further, since every nonzero prime ideal of OK factors as a product of prime ideals of OK , one can
show that the ideal p in OK is prime if it has norm p. Essentially, one can learn about the factorization of
the ideal xOK in the ring of integers of a number field K by looking at the factorization of the norm of x as
an element of Z.

A helpful consequence of this theory is that if a prime p ramifies in K (that is, (p) = pOK factors as a
product of powers of prime ideals, and one of these powers is greater than 1), there is only one ideal of norm
p in OK . Dedekind’s Theorem states that a rational prime number is ramified in K if and only if p|∆K . If
a prime p splits as a product of two distinct prime ideals, then there are exactly 2 ideals of norm p in OK
[13].

2.2 Examples

Example 2.2.1.
(a) Let K = Q(

√
d) be an imaginary quadratic field. n = 2 and r2 = 2, so Minkowski’s bound gives

MK = (2/π)
√
|4d| if d ≡ 2, 3 (mod 4) and MK = (2/π)

√
|d| if d ≡ 1 (mod 4). We now use this to compute

the class number of K when d = −1,−2,−3 and −7. For d = −1 and d = −2, we have MK = 4/π ≈ 1.27
and MK = 4

√
2/π ≈ 1.80, respectively. For d = −3 and d = −7, we have MK = 2

√
3/π ≈ 1.10 and

MK = 2
√

7/π ≈ 1.68, respectively. In all four cases, the Minkowski bound is less than 2 ⇒ every ideal class
in ClK must contain the trivial ideal (1), as this is the only ideal of norm 1 in OK . Thus, there can only be
one ideal class, and the class number of K is exactly 1. That is, ClK is trivial, and OK is a UFD.

(b) Now, let K = Q(
√
d) be a real quadratic field. n = 2 and r2 = 0, so Minkowski’s bound gives

MK =

√
|4d|
2 if d ≡ 2, 3 (mod 4) and MK =

√
|d|
2 if d ≡ 1 (mod 4). We now use this to compute the class

number of K when d = 2, 3, 5 and 13. For d = 2 and d = 3, we have MK =
√

2 and MK =
√

3, respectively.
For d = 5 and d = 13, we have MK =

√
5/2 ≈ 1.12 and MK =

√
13/2 ≈ 1.80, respectively. Since the

Minkowski bound is less than 2 for all four cases, we use the same argument as (a) to conclude that in
every case, the class number of K is 1.

Example 2.2.2. Let K = Q(ζ5). Then n = 4, r2 = 2 and ∆K = 125, so Minkowski’s bound gives MK ≈ 1.7.
Thus, by the same arguments in (a), K has class number 1.

An important takeaway from the last two examples is, if we get MK < 2 for a number field K, we can
conclude immediately that K has class number 1.

Example 2.2.3.
(a) Let K = Q(

√
−5). n = 2, r2 = 2, and ∆K = −20, so Minkowski’s bound gives MK = (2/π)

√
20 ≈ 2.85.

By Dedekind’s Theorem, 2 ramifies in K (which we can verify by observing that x2+5 factors as (x+1)2 mod
2, so that (2) = 2OK = (2, 1+

√
−5)2)⇒ there is only one ideal of norm 2 in OK , and the class number is at

most 2. However, OK = Z[
√
−5] is not a unique factorization domain, since 6 = 2 ·3 = (1 +

√
−5)(1−

√
−5),

and the only units in OK are 1 and −1 (that is, none of those 4 factors are associates). Thus, the class
number of K cannot be 1 ⇒ the class number of K is 2.

(b) Let K = Q(
√

6). n = 2, r2 = 0, and ∆K = 24, so Minkowski’s bound gives MK =
√

6 ≈ 2.45. By
Dedekind’s Theorem, 2 ramifies in K, and the rest of the argument proceeds as in (a), where OK = Z[

√
6]
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is not a unique factorization domain since −2 = (2 +
√

6)(2−
√

6), and both factors are associates, because
(2 +

√
6)/(2−

√
6) = −5− 2

√
6, which is a unit. Thus, the class number of K here is also 2.

Example 2.2.4.

(a) Let K = Q(
√

17). n = 2, r2 = 0 and ∆K = 17, so Minkowski’s bound gives MK =
√

17
2 ≈ 2.06. By

Dedekind’s Theorem, 2 does not ramify in K – in fact, 2 splits as a product of two distinct prime ideals, and
there are 2 ideals of norm 2 in OK . However, these ideals are principal, since −2 = [(3+

√
17)/2][(3−

√
17)/2].

Thus, every ideal class contains a principal ideal, and the class number of K is 1.

(b) Let K = Q(
√

14). n = 2, r2 = 0 and ∆K = 56, so Minkowski’s bound gives MK =
√

14 ≈ 3.74. 3
remains prime, so there are no ideals of norm 3. 2 ramifies by Dedekind’s Theorem, so there is only one
ideal of norm 2 in OK . But, this ideal is principal, since 2 = (4 +

√
14)(4−

√
14). Thus, similar to (a), we

get trivial class group, and the class number of K is 1.

Section 4.3.2 in [3] is helpful in addressing the different cases considered when factoring the ideal (p) in OK
for a quadratic field K. In the last example, case c2 was used for part (a), while cases a2 and b were used
for part (b).

Example 2.2.5. Let K = Q(21/3). n = 3, r2 = 1 and ∆K = −108, so Minkowski’s bound gives MK ≈ 2.94.
Thus, every ideal in OK is equivalent to one whose norm is at most 2 – that is, we only need to check the
prime ideals of norm at most 2 in OK , as each ideal class group contains such an ideal. The only ideal of
norm 1 in OK is the full ring of integers. Consider a prime ideal p in OK of norm 2, lying over an ideal (p)
of Z. In OK , we have the factorization 2OK = (2, 21/3)2 = (21/3)3. Thus, the ideal class group of OK is
generated by (1) and (21/3), both principal. Therefore, the class number of K is 1.

Completing computations to find the class number of an imaginary quadratic field Q(
√
d) partially

addresses problems posed by Gauss in his work Disquisitiones Arithmeticae (1801). Gauss conjectured the
following [1] :

• As d approaches −∞, the class number of Q(
√
d) tends to ∞.

This was later proved by Heilbronn in 1934. In fact, it turns out that for a given class number, there
are finitely many imaginary quadratic fields with that class number.

• For low class numbers, Gauss gave different lists of which imaginary quadratic fields have that class
number, and conjectured this list to be complete.

For class numbers 1, 2 and 3, work of Baker, Stark, Heegner, and Oesterlé proved Gauss’ lists to indeed
be complete. Watkins solved the problem for class number up to 100 in 2004. For class number 1,
Gauss’ list was d = −1,−2,−3,−7,−11,−19,−43,−67,−163, now known as the Heegner numbers.
Providing such lists became known as the class number problem.

• There are infinitely many quadratic fields with class number 1.

This is still an open problem. A list of real quadratic fields K = Q(
√
d) known to have class number 1

is complete up to d = 100, and [2] contains that list. The article contains similar results for cubic and
cyclotomic fields. Further, [17] discusses a complicated formula, the class number formula, to compute
the class number of a quadratic field along with related results.

Gauss formulated his work on the class number of quadratic fields in terms of binary quadratic forms, and
defined a product for them. His work, largely included in Disquisitiones Arithmeticae, was clarified and
successfully translated to have consequences related to ideal class groups of quadratic fields only later, after,
for example, Kummer and Dedekind put in work to define ideals (see page 74 of [14], and the brief discussion
on the next few pages as a supplement for what we study in Section 3). In fact, Gauss’ work with binary
quadratic forms motivated Kummer and Kronecker, inspired by Gauss’ composition of classes of quadratic
forms, to define number fields and ideal class groups in general. In the next section, we will take a closer
look at the foundational work of Gauss and others on the class number in terms of the theory on these forms
that they developed, and show its connection to the modern study of the class number of quadratic fields.
A general reference for what we discuss in Section 3 is [7] (Sections 2A, 3A, 3D, and 7D, in particular).
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3 Foundational Theory Using Quadratic Forms & Its Connection
to the Class Group of Quadratic Fields

3.1 Relevant Theory of Quadratic Forms

The theory of quadratic forms we discuss was first introduced and studied by Gauss, but built upon by
others such as Lagrange, Dedekind and Dirichlet.

Definition 3.1.1. A binary quadratic form is a polynomial q(x, y) = ax2 + bxy+ cy2 in two variables x and
y, with coefficients a, b and c and discriminant ∆ = b2 − 4ac (and, it follows that ∆ ≡ 0 (mod 4) or ∆ ≡ 1
(mod 4)). When a, b, c ∈ Z, q(x, y) is known as an integral binary quadratic form (often simply called a
binary quadratic form, which is the convention we will use). We denote the space of binary quadratic forms
of discriminant ∆ by F∆.

If ∆ 6= 0, q(x, y) is called nondegenerate; otherwise, q(x, y) is degenerate. q(x, y) is primitive if gcd(a, b, c),
also known as the content of the form, is equal to 1. A binary quadratic form is definite if ∆ < 0,
positive definite if ∆ < 0 and a > 0, and indefinite if ∆ > 0. When ∆ < 0, we may call q(x, y) an
imaginary quadratic form, and if ∆ > 0, q(x, y) is called a real quadratic form. If q(x, y) is a (positive)
definite binary quadratic form, we say it is reduced if |b| ≤ a ≤ c and b ≥ 0 if a = c or a = |b|. If q(x, y) is
an indefinite form, it is reduced if |

√
∆− 2|c|| < b <

√
∆.

Two binary quadratic forms q(x, y) and q′(x, y) are equivalent, or properly equivalent (and, we may write

q(x, y) ∼ q′(x, y)) , if q′(x, y) = q(αx+ βy, γx+ δy) and the integer matrix A =

(
α β
γ δ

)
has determinant 1

(i.e., A ∈ SL2(Z)). q(x, y) and q′(x, y) are improperly equivalent if q′(x, y) = q(αx+ βy, γx+ δy) and A has
determinant ±1 (as was considered by Lagrange). If q(x, y) and q′(x, y) are equivalent, they have the same
discriminant ∆; however, there are inequivalent forms that have equal discriminants (a brief discussion of
much of this is covered in [11]).

In their treatment of the theory of binary quadratic forms that leads to the ideal class group of quadratic
fields, many authors restrict their attention to positive definite forms, for simplicity. Further, when working
with binary quadratic forms, attention is often restricted to primitive forms, because every form is a
multiple of a primitive one. Lastly, there is a notion of equivalence of binary quadratic forms under an
action of GL2(Z), and since SL2(Z) is a subgroup of GL2(Z), this action restricts to the action of SL2(Z)
on binary quadratic forms described above (see Section 1.2 of [16]).

The proper equivalence ∼ defined in the above definition indeed defines an equivalence relation on the set
of binary quadratic forms :
(i) q(x, y) = q(1x+ 0y, 0x+ 1y)⇒ q(x, y) ∼ q(x, y) ,
(ii) q(x, y) ∼ q′(x, y)⇒ q′(x, y) = q(αx+ βy, γx+ δy) for some α, β, γ, δ ∈ Z such that αδ − βγ = 1 ⇒
q(x, y) = q′(δx− βy,−γx+ αy)⇒ q′(x, y) ∼ q(x, y), and
(iii) q(x, y) ∼ q′(x, y), q′(x, y) ∼ q′′(x, y) for binary quadratic forms q(x, y), q′(x, y), q′′(x, y)⇒
q′(x, y) = q(α1x+ β1y, γ1x+ δ1y) and q′′(x, y) = q′(α2x+ β2y, γ2x+ δ2y) for some αi, γi, βi, δi ∈ Z
(i = 1, 2) such that α1δ1 − β1γ1 = α2δ2 − β2γ2 = 1 ⇒
q′′(x, y) = q((α1α2 + β1γ2)x+ (α1β2 + β1γ2)y, (γ1α2 + δ1γ2)x+ (γ1β2 + δ1δ2)y) ⇒ q(x, y) ∼ q′′(x, y).

We may form a factor set of the relation ∼ consisting of the collection of proper equivalence classes of
binary quadratic forms defined by ∼. In particular, as was considered by Gauss, we may study the set of
proper equivalence classes of binary quadratic forms under ∼ with a fixed discriminant, Cl(∆) = F∆/ ∼.

Brahmagupta’s composition law states that, given two numbers a2 + nb2 and c2 + nd2, we have
(a2 + nb2)(c2 + nd2) = (ac− nbd)2 + n(ad+ bc)2 = X2 + nY 2 (where X = ac− nbd, Y = ad+ bc), i.e., that
the set of numbers of the form a2 + nb2 are closed under multiplication. Gauss, restricting his attention to
primitive binary quadratic forms, took inspiration from this in defining a composition q1(x1, y1) ◦ q2(x2, y2)
of two binary quadratic forms q1 and q2 of discriminant ∆ to produce a form q3(x, y) with the same
discriminant, where x, y are quadratic expressions in x1, y1, x2, y2. The especially remarkable property of
this composition is that it gives Cl(∆) the structure of a finite abelian group. With this, we may now
formally define the form class group (see Sections 4.2 and 4.3 of [11]).
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Definition 3.1.2. The set of proper equivalence classes of binary quadratic forms with discriminant ∆
under composition of forms Cl(∆) = F∆/ ∼ is called the form class group of discriminant ∆. The form
class group is a finite abelian group, with order the class number |Cl(∆)| = h(∆) of discriminant ∆.

It is worth briefly commenting on the group structure of Cl(∆). Gauss provided a simple reduction
algorithm that, given a binary quadratic form q(x, y), produced a properly equivalent reduced binary
quadratic form q′(x, y) in a finite number of steps. Using Gauss’ algorithm, one can show that, if q(x, y)
has negative discriminant, q(x, y) is properly equivalent to a unique reduced binary quadratic form (and,
with this, we can construct a canonical representative of each equivalence class of Cl(∆)), and there is a
cycle of reduced binary quadratic forms such that each element of a proper equivalence class of binary
quadratic forms of positive discriminant is equivalent to one of the forms in this cycle [9]. Further, the
identity element of Cl(∆) is the principal class of discriminant ∆, the proper equivalence class of the
principal form. If ∆ ≡ 0 (mod 4), the principal form is given by x2 − ∆

4 y
2, and if ∆ ≡ 1 (mod 4), the

principal form is given by x2 − xy + 1−∆
4 (see Definition 2.7 of [8]). The inverse of the binary quadratic

form q1(x, y) = ax2 + bxy + cy2 is given by q2(x, y) = ax2 − bxy + cy2. Finiteness of |Cl(∆)| = h(∆) was
due to a result of Lagrange, although Gauss’ work sufficed to see this.

Example 3.1.3.
(i) There is only 1 proper equivalence class in Cl(−8), with the reduced binary quadratic form representative
x2 + 2y2. Thus, h(−8) = 1.

(ii) Consider the form class group of discriminant −20. There are 2 distinct proper equivalence classes in
Cl(−20) with reduced binary quadratic form representatives x2 + 5y2 and 2x2 + 2xy + 3y2. Thus,
h(−20) = 2.

(iii) Consider the form class group of discriminant −56. There are 4 distinct proper equivalence classes in
Cl(−56) with reduced binary quadratic form representatives q1 = x2 + 14y2, q2 = 2x2 + 7y2,
q3 = 3x2 + 2xy + 5y2, and q4 = 3x2 − 2xy + 5y2. Thus, h(−56) = 4. Further, using Gauss’ method for
composing quadratic forms, one can verify the identities q3 ◦ q3 ∼ q4 ◦ q4 ∼ q2, and conclude that Cl(−56)
is isomorphic to the cyclic group of order 4 (Example 4.4.6 and Exercise 4.15 of [11]).

In light of the above example, let us revisit the ideal class group of a quadratic field Q(
√
d) from the first

two sections of this paper for a moment. Q(
√
−8) = Q(

√
−2) has class number 1, as shown in example

2.2.1. Q(
√
−20) = Q(

√
−5) has class number 2, as shown in Example 2.2.3. One can also show that

Q(
√
−56) = Q(

√
−14) has class group isomorphic to C4, and thus, has class number 4. It is no coincidence

that, in all of these cases, the class number of K = Q(
√
d) occurring as the order of the ideal class group of

K agrees with the class number h(∆) of the form class group of discriminant ∆, the discriminant of K, as
we will see in Section 3.2.

3.2 Connection to Class Groups of Quadratic Fields

Definition 3.2.1. Let K be a number field. An element a of K is totally positive if σ(a) > 0 for any real
embedding σ of K into R. A totally positive principal fractional ideal of OK , then, is an ideal in OK of the
form (a) = aOK . The narrow class group of K is the quotient group C+

K = IK/P
+
K , where IK is the group

of fractional ideals of OK and P+
K is the group of totally positive principal fractional ideals of OK . |C+

K | is
the narrow class number of K.

Let K be a quadratic number field Q(
√
d). We note that if d < 0, there are no real embeddings σ of K into

R, so every element of K is totally positive (that is, totally positive principal fractional ideals of OK
coincide with principal fractional ideals of OK , and we see that C+

K is just the ideal class group of K), and

if d > 0, we need σ1(λ), σ2(λ) > 0 in order for λ = a+ b
√
d ∈ K to be totally positive, where

σ1 : K −→ R : a+ b
√
d 7−→ a+ b

√
d and σ2 : K −→ R : a+ b

√
d 7−→ a− b

√
d [4].

Theorem 3.2.2. Let K = Q(
√
d) be a quadratic field with discriminant ∆. Then Cl(∆) is isomorphic to

the narrow class group of K.
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We note that, if d < 0, one can simply say that Cl(∆) is isomorphic to the ideal class group of K, following
our note of the fact that the ideal class group of K is equal to the narrow class group of K in this case.
Thus, the narrow class number of K coincides with the class number of K if d < 0. However, if d > 0, the
ideal class group of K may be half the size of the narrow class group of K (as is the case with Q(

√
3),

which has class number 1 but narrow class number 2).

The above Theorem is at the heart of the connection between the form class group that we’ve discussed in
this section and the ideal class group of a quadratic number field K discussed in Sections 1 and 2. It is
significant in translating Gauss’ work on binary quadratic forms and his construction of the form class
group of a specified discriminant to the more modern notions of the ideal class group and class number of a
quadratic field K that measures the failure of OK to be a unique factorization domain.

Amazingly, Gauss’ work went far beyond defining a proper equivalence of binary quadratic forms to
construct the form class group. He also built a looser notion of equivalence on forms to construct a genus
of forms [11]. This concept is out of the scope of this paper, but I’m certainly interested in continuing to
read up on this idea.
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