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Abstract

This is an expository paper that aims to provide an overview of the Mayer-Vietoris sequence. The
intended reader is a student enrolled in a first course in algebraic topology. We first state and prove
the main theorem, consider other versions of the sequence, and discuss its relation to other ideas such
as homology theories. Then, we work through different examples of computing homology groups by
applying the sequence and discuss its generalization to the Mayer-Vietoris spectral sequences.

1 Main Results

In this section, we state and prove the main result that yields the Mayer-Vietoris sequence for ordinary
unreduced homology. Then, we state both a version of the Mayer-Vietoris sequence for reduced homology
and a version for cohomology. Finally, we discuss how the Mayer-Vietoris sequence is related to the van
Kampen Theorem and homology theories.

1.1 Statement & Proof

Theorem 1.1.1 (Mayer-Vietoris Sequence). SupposeX is a topological space such thatX = int(A)∪ int(B),
where A and B are subspaces of X and int(A) and int(B) denote the interiors of A and B, respectively.
Then we obtain the following long exact sequence :

· · · → Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ · · · → H0(X)→ 0.

This is known as the Mayer-Vietoris sequence.

Proof. Let Cn(X) denote the free abelian group generated by the set of singular n-simplices in X, and
consider its subgroup Cn(A + B) consisting of elements that are sums of chains in A and chains in B. We
have the chain complex (C•(X), δ•) given by

· · · δ0←− C0(X)
δ1←− C1(X)

δ2←− C2(X)
δ3←− · · · ,

where δn : Cn(X)→ Cn−1(X) is the boundary map. This map restricts to Cn(A+B) and maps Cn(A+B)
to Cn−1(A+B). With this, we also have the chain complex (C•(A+B), δ•) given by

· · · δ0←− C0(A+B)
δ1←− C1(A+B)

δ2←− C2(A+B)
δ3←− · · · .

Now, the sequence of inclusion maps ιn : Cn(A + B) ↪→ Cn(X) for each n defines a chain map (and, more
particularly, a chain homotopy equivalence1) between the chain complexes (C•(X), δ•) and (C•(A+B), δ•).
In turn, we obtain isomorphisms in homology groups Hn(A+B) ∼= Hn(X) for all n.

Next, for n ≥ 0, consider the sequence

0→ Cn(A ∩B)
α−→ Cn(A)⊕ Cn(B)

β−→ Cn(A+B)→ 0,

1That this is a chain homotopy equivalence is the subject of Proposition 2.21 in [5].
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where α : x 7−→ (x,−x) and β : (x, y) 7−→ x + y. α is injective as it has trivial kernel, and β is surjective
by our definition of Cn(A + B). (β ◦ α)(x) = 0 ⇒ Im(α) ⊂ ker(β). Lastly, if (x, y) ∈ ker(β), then
x ∈ Cn(A), y ∈ Cn(B) and x = −y ⇒ x ∈ Cn(A ∩ B) and α(x) = (x,−x) = (x, y) ⇒ ker(β) ⊂ Im(α).
Therefore, this is a short exact sequence. Finally, applying the long exact sequence in homology2 to the
corresponding short exact sequence of chain complexes, using the aforementioned isomorphism in homology
groups Hn(A + B) ∼= Hn(X) for all n, and using that homology commutes with direct sums, the Mayer-
Vietoris sequence follows.

Remark 1.1.2. We shall briefly note the maps between the homology groups included in the Mayer-Vietoris
sequence. The map φ : Hn(A ∩ B) → Hn(A) ⊕Hn(B) : x 7−→ (f(x), g(x)) involves the maps on homology
f : Hn(A ∩ B) → Hn(A) and g : Hn(A ∩ B) → Hn(B) induced from the inclusions A ∩ B ↪→ A and
A∩B ↪→ B. The map ψ : Hn(A)⊕Hn(B)→ Hn(X) : (y, z) 7−→ i(y)− j(z) involves the maps on homology
i : Hn(A)→ Hn(X) and j : Hn(B)→ Hn(X) induced from the inclusions A ↪→ X and B ↪→ X. Finally, the
map δ : Hn(X)→ Hn−1(A ∩B) is the usual boundary map.

1.2 Other Versions

Theorem 1.2.1 (Mayer-Vietoris Sequence for Reduced Homology). Suppose X is a topological space such
that X = int(A) ∪ int(B), where A and B are subspaces of X such that A ∩ B 6= ∅ and int(A) and int(B)
denote the interiors of A and B, respectively. Then we obtain the following long exact sequence in reduced
homology :

· · · → H̃n(A ∩B)→ H̃n(A)⊕ H̃n(B)→ H̃n(X)→ H̃n−1(A ∩B)→ · · · → H̃0(X)→ 0.

Theorem 1.2.2 (Mayer-Vietoris Sequence for Cohomology). Suppose X is a topological space such that
X = int(A) ∪ int(B), where A and B are subspaces of X and int(A) and int(B) denote the interiors of A
and B, respectively. Then we obtain the following long exact sequence of singular cohomology groups of X
with coefficients in the group G:

· · · → Hn(X;G)→ Hn(A;G)⊕Hn(B;G)→ Hn(A ∩B;G)→ Hn+1(X;G)→ · · ·

Remark 1.2.3 (Mayer-Vietoris Sequence for de Rham Cohomology). In Theorem 1.2.2, if X is a smooth
manifold and G = R, we recover the Mayer-Vietoris sequence for de Rham cohomology.

1.3 Relationship With the van Kampen Theorem & Homology Theories

Suppose X is a topological space such that X = A ∪ B for open, path-connected subspaces A and B of
X that each contain the basepoint of X and whose intersection A ∩ B is path-connected. Then, by the
Mayer-Vietoris sequence, we have an exact sequence

H1(A ∩B)→ H1(A)⊕H1(B)→ H1(X)→ H0(A ∩B)→ H0(A)⊕H0(B)

Since the 0th homology group of a path-connected space is isomorphic to Z, this exact sequence simplifies to

H1(A ∩B)
φ−→ H1(A)⊕H1(B)

ψ−→ H1(X)→ Z→ Z⊕ Z

ψ is surjective by our path-connectedness assumptions, so by the First Isomorphism Theorem, we have
(H1(A) ⊕ H1(B))/ ker(ψ) ∼= H1(X). Finally, by exactness, ker(ψ) = Im(φ), so we obtain (H1(A) ⊕
H1(B))/ Im(φ) ∼= H1(X). Now, by our original assumptions, we also have by the van Kampen Theorem
that there exists a homomorphism θ : π1(A) ∗π1(A∩B) π1(B) −→ π1(X), where ∗π1(A∩B) denotes an amal-
gamated free product of groups, which induces an isomorphism π1(X) ∼= (π1(A) ∗π1(A∩B) π1(B))/ ker(θ).
But, using that H1(Y ) ∼= Abπ1(Y ) for a path-connected space Y 3, a union of path-connected subspaces of a

2The result used here is that a short exact sequence of chain complexes yields a wider long exact sequence of homology
groups when passing to homology groups, and can be found in [5], pp. 116-117.

3This is the subject of Theorem 2A.1 in [5].
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space is path-connected if they share at least one common point4, and the abelianization of a free product of
groups is isomorphic to the direct sum of their abelianizations, we recover precisely the previous isomorphism
(H1(A) ⊕H1(B))/ Im(φ) ∼= H1(X). In this way, we see the analogue between the Mayer-Vietoris sequence
and the van Kampen Theorem : the Mayer-Vietoris sequence yields exactly the abelianized statement of the
van Kampen Theorem.

Recall that the Eilenberg-Steenrod axioms (detailed in [9] in terms of homology theories on pairs of spaces)
provide certain properties satisfied by a given homology theory, including the excision axiom. Recall also
the well-known example of a homology theory that is singular homology. In particular, the excision
property satisfied by singular homology can be used to derive both the original and relative form of the
Mayer-Vietoris sequence (see [3] for more detail). Even more, one may provide the axioms for homology
theories in terms of homology theories on individual spaces, rather than pairs of spaces. In this case, one
may replace the exactness axiom by one that involves the Mayer-Vietoris sequence [7]. Further, every
homology theory of CW complexes has Mayer-Vietoris sequences. Finally, one can provide a different
statement of the axioms for homology theories by applying the Mayer-Vietoris sequence5.

2 Example Computations

In this section, we use the Mayer-Vietoris sequence and its version for reduced homology to calculate the
homology groups or reduced homology groups of certain well-studied topological spaces.

Example 2.0.1 (Homology of the k-sphere). Consider the nth homology group Hn(Sk) of the k-sphere
X = Sk (n, k ≥ 0). Hn(Sk) ∼= Z ⊕ Z for n = k = 0, as the disjoint union of two points has two path-
connected components. Hn(Sk) ∼= Z for n = 0, k > 0 as Sk has one path-connected component for k > 0.
Let k ≥ 1, let A be the upper hemisphere of X, and let B be the lower hemisphere of X. Then, for n ≥ 1, since
A ∩B = Sk−1 and A and B are each contractible as retracts of a punctured sphere which is homeomorphic
to Rn (and, hence, they each have vanishing homology in all positive degrees and H0(A) ∼= H0(B) ∼= Z), we
obtain via the Mayer-Vietoris sequence the exact sequence

0→ Hn+1(Sk)→ Hn(Sk−1)→ 0,

giving that Hn+1(Sk) ∼= Hn(Sk−1)6. This isomorphism will allow us to complete our characterization of the
homology groups of spheres once we compute homology in degree 1 for a general sphere of dimension k ≥ 1.
Via the Mayer-Vietoris sequence, we have the exact sequence

0→ H1(Sk)→ H0(Sk−1)→ Z⊕ Z→ H0(Sk)→ 0.

For k > 1, this yields the exact sequence

0→ H1(Sk)→ Z→ Z⊕ Z→ Z→ 0,

showing that H1(Sk) = 07, while for k = 1, we have H1(S1) ∼= Z8. Finally, it’s easy to see that H1(S0) ∼= 0.
With this, we may fully characterize the homology groups of the k-sphere as follows :

Hn(Sk) ∼=


Z if n = 0, k > 0

Z if n = k, k > 0

Z⊕ Z if n = k = 0

0 otherwise
4The relevant result here can be found in Proposition 16.14 (2) of [2].
5This is discussed by Lennart Meier at https://mathoverflow.net/questions/97621/mayer-vietoris-implies-excision.
6Because the suspension of the n-sphere is the (n+1)-sphere, this agrees with the result that, for n ≥ 1, Hn+1(ΣX) ∼= Hn(X),

where X is a topological space. We will see in Example 2.04 that this coincides with the result based on reduced homology.
7This follows from exactness of the sequence 0→ Z→ Z⊕ Z→ Z→ 0.
8Without prior knowledge of this fundamental isomorphism, one can see this by use of the Mayer-Vietoris sequence for

reduced homology in this example.
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Example 2.0.2 (Homology of the Klein bottle). Consider the nth homology group of the Klein bottle X.
H0(X) ∼= Z because X is connected. Recall that we may construct X = I2/ ∼ by defining the equivalence
relation ∼ on the unit square I2 = [0, 1]× [0, 1], given by (0, y) ∼ (1, y) for 0 ≤ y ≤ 1 and (x, 0) ∼ (1− x, 1)
for 0 ≤ x ≤ 1, and equipping I2/ ∼ with the quotient topology with respect to the canonical quotient map
g : I2 → I2/ ∼. That is, X is constructed through the identification of points on the boundary of the unit
square as follows :

Now, we may decompose X into two Möbius bands A and B intersecting along their boundaries. Using the
aforementioned construction of X, this decomposition is shown below with A in blue and B in red.

Each of A and B deformation retract onto their core circles, meaning A and B are each homotopy equivalent
to S1. Further, A ∩ B is homotopy equivalent to S1. Hence, because homology groups are invariant under
homotopy equivalence, this gives Hn(A), Hn(B) and Hn(A ∩B) are isomorphic to Hn(S1) for all n ≥ 0 (of
which we have a full calculation from the last example). With this, for n > 2, we arrive at an exact sequence

Hn(S1)⊕Hn(S1)→ Hn(X)→ Hn−1(S1)→ Hn−1(S1)⊕Hn−1(S1)

by use of the Mayer-Vietoris sequence, which simplifies to the exact sequence

0→ Hn(X)→ 0→ 0,

showing that Hn(X) ∼= 0 for n > 2. It remains to compute H1(X) and H2(X). By the Mayer-Vietoris
sequence, the sequence

H2(S1)⊕H2(S1)→ H2(X)→ H1(S1)→ H1(S1)⊕H1(S1)→ H1(X)→ 0

is exact, which simplifies to the exact sequence

0→ H2(X)→ Z f−→ Z⊕ Z g−→ H1(X)
h−→ 0.

The map f is given by f : Z→ Z⊕ Z : 1 7−→ (2,−2) as, for each Möbius band, its boundary wraps around
its core circle twice. That is, f is a degree 2 map that takes into account orientations. f is injective, so we
have H2(X) ∼= 0 by the First Isomorphism Theorem. Further, with Im(f) = 2Z(1,−1) = ker(g) and h the
zero map, g is surjective and (Z ⊕ Z)/2Z(1,−1) ∼= H1(X) by the First Isomorphism Theorem. Finally, as
{(1, 0), (1,−1)} is a basis for Z⊕ Z, we obtain by direct calculation that H1(X) ∼= Z⊕ Z/2Z. In summary,
the homology of the Klein bottle is shown below.

Hn(X) ∼=


Z if n = 0

Z⊕ Z/2Z if n = 1

0 if n ≥ 2

Example 2.0.3 (Reduced homology of a wedge sum). Consider the nth reduced homology group of the
wedge product X ∨ Y of two spaces X and Y , where we suppose that we have open neighborhoods U ⊂ X
and V ⊂ Y and each of U and V deformation retract down to the basepoints of X and Y that are identified
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when constructing X ∨ Y . Let A = X ∪ V and let B = Y ∪ U . Then, by the Mayer-Vietoris sequence for
reduced homology, since A ∩B = U ∩ V , we have for all n the exact sequence

H̃n(U ∩ V )→ H̃n(X ∪ V )⊕ H̃n(Y ∪ U)→ H̃n(X ∨ Y )→ H̃n−1(U ∩ V ).

But U ∩ V deformation retracts down to a point (hence its reduced homology groups all vanish), X ∪ V
deformation retracts down to X, and Y ∪ U deformation retracts down to Y , so using that homology is
invariant under deformation retraction, the exact sequence simplifies to

0→ H̃n(X)⊕ H̃n(Y )→ H̃n(X ∨ Y )→ 0.

Thus, H̃n(X)⊕ H̃n(Y ) ∼= H̃n(X ∨ Y ) for all n. 9

Example 2.0.4 (Reduced homology of the suspension of a space). Consider the nth reduced homology
group of the suspension ΣX of a space X. In constructing ΣX, each of X × {0} and X × {1} are collapsed
down to points p and q, respectively. Let A = ΣX − {p} and let B = ΣX − {q}. Each of A and B are
homeomorphic to the cone space CX = (X × I)/(X × {0}). By the Mayer-Vietoris sequence for reduced
homology, since A ∩B = X × (0, 1), we obtain the exact sequence

H̃n(ΣX − {p})⊕ H̃n(ΣX − {q})→ H̃n(ΣX)→ H̃n−1(X × (0, 1))→ H̃n−1(ΣX − {p})⊕ H̃n−1(ΣX − {q})

for all n. But, by using that homology is invariant under homeomorphism, that CX is contractible10 (hence,
its reduced homology vanishes in all degrees), that X × (0, 1) deformation retracts down to X, and that
homology is invariant under deformation retraction, this sequence simplifies to

0→ H̃n(ΣX)→ H̃n−1(X)→ 0

Thus, we obtain that the nth reduced homology group of the suspension of a space X is isomorphic to the
(n− 1)st homology group of X for all n. 11

3 The Mayer-Vietoris Spectral Sequence

In this section, we describe the Mayer-Vietoris spectral sequence, from which we can recover the Mayer-
Vietoris sequence. The fundamental idea is to now consider an open cover of a space X by any number of
open subsets of X, and utilize the spectral sequence to compute the homology of X.

Suppose that X is a topological space and U = {U1, U2} is an open cover of X. Then, following the same
ideas we’ve used previously in our proof of the Mayer-Vietoris sequence, we have a short exact sequence of
chain complexes

0→ S•(U0 ∩ U1)→ S•(U0)⊕ S•(U1)→ SU• (X)→ 0,

where Sq(Y ) := Z[map(∆q, Y )], SUq = Z[{σ : ∆2 → X | ∃U ∈ U s.t. Im(σ) ⊆ U}], the map from S•(U0 ∩U1)

to S•(U0)⊕ S•(U1) maps an element x to (−x, x), and the map from S•(U0)⊕ S•(U1) to SU• (X) maps an
element (y, z) to y + z. Applying the long exact sequence in homology to this short exact sequence yields a
long exact sequence of singular homology groups precisely like the Mayer-Vietoris sequence.

Definition 3.0.1. Suppose that X is a topological space and U = {Uλ}λ∈Λ is an open cover of X. Then,
we can construct the corresponding abstract simplicial complex given by KU = (VKU , SKU ), where the
vertices VKU = {Uλ}λ∈Λ are the open sets in the cover and SKU = {Γ := {Uγ}γ∈Γ : UΓ = ∩γ∈ΓUγ
6= ∅, ∅ 6= Γ ⊆ Λ finite} gives the simplices. Further, there exists an extended ordered Cech complex, which is
the long exact sequence of chain complexes

· · · δ2,2−−→ ⊕
Γ∈K(1)

U
Sq(UΓ)

δ1,2−−→ ⊕γ0Sq(Uγ0)→ SUq (X)→ 0.

9This isomorphism holds for the ordinary unreduced homology groups as well, except for in degree zero (hence the advantage
to using reduced homology here).

10This is due to the homotopy ht(x, s) = (x, (1− t)s), continuously shrinking CX down to its vertex point.
11The same isomorphism holds for n ≥ 1 in the case that we use unreduced homology here.
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The Mayer-Vietoris double complex (shown below) (M,dζ , dη) is then given by Mp,q := ⊕
Γ∈K(p)

U
Sq(UΓ)

with vertical differentials derived from direct sums of the corresponding differentials between singular
homology groups and horizontal differentials derived from the corresponding differentials in the appropriate
Cech complex.

0
...

...
...

0 ⊕
Γ∈K(0)

U
S2(UΓ) ⊕

Γ∈K(1)
U
S2(UΓ)) ⊕

Γ∈K(2)
U
S2(UΓ) · · ·

0 ⊕
Γ∈K(0)

U
S1(UΓ) ⊕

Γ∈K(1)
U
S1(UΓ)) ⊕

Γ∈K(2)
U
S1(UΓ) · · ·

0 ⊕
Γ∈K(0)

U
S0(UΓ) ⊕

Γ∈K(1)
U
S0(UΓ)) ⊕

Γ∈K(2)
U
S0(UΓ) · · ·

0 0 0 0

Finally, arising from this double complex is a (convergent) spectral sequence, the Mayer-Vietoris spectral
sequence E2

p,q = Hp(C•(KU , Fq))⇒ Hp+q(X). The differential dr is defined by drp,q : Erp,q → Erp−r,q+r−1.
By performing spectral sequence computations at the first and second page of this spectral sequence, we
can obtain two respective short exact sequences, and by splicing these two sequences, we can recover the
Mayer-Vietoris sequence from this spectral sequence.
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