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CHAPTER 1: INTRODUCTION 

In 1904, Jon Ambrose Fleming invented the first Vacuum tube that worked as a rectifier to 

convert AC into DC current, which marked the beginning of the age of electronics. In 1907, Lee 

De Forest invented the triode, consisting of two electrodes - anode & cathode and one control grid 

to amplify weak signals. The cathode was heated, to generate the electrons and the control grid 

was used to control the flow of electrons to the anode. Thus, the output of the tube could be con-

trolled by the grid current. The first computer was made up of these vacuum tubes. However, these 

vacuum tubes were not efficient as electronic switches. The vacuum tubes were big in size, needed 

large amount of the power and gave off large amount of heat. The search for the alternatives of 

these vacuum tubes led the world towards the modern age of electronics. With the invention of 

Silicon based transistors, the world witnessed the huge progress in the field of electronics. In 1954, 

first Silicon transistor was developed at Bell laboratories by controlling the doping of single Sili-

con crystal while grown from molten Silicon1. In 1955, the doping process was refined by using 

diffusion of donor and acceptor impurities in single Silicon crystal2. The continuous process of 

improvement and development is going on until the present. After the invention of  Silicon chip in 

the late 1950s, the number of transistors in a chip has doubled almost every 18 months3. Now, a 

microprocessor can contain more than two billion transistors. The performance of the chip has 

been improved with less power consumption and reduced cost. This became possible because of 

the scalability of Si-based transistor alongside the improvement in speed and energy consumption. 

These benefits led to the rise of personal computers and mobile computing technologies such as 

laptops, smart phones etc. However, the scaling down of Si transistor cannot go indefinitely. Tran-

sistors are already so small, further shrinking them would compromise the performance of the 

device. As the traditional scaling of Si transistors is about to reach its limit, suitable alternative 
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candidate is required to carry the progress of electronics further. In this regard, atomically thin 

two-dimensional (2D) materials are sought as a post-silicon alternative. These 2D materials exhibit 

excellent electronic and optoelectronic properties, mechanical flexibility and stability4–8. Further-

more, these 2D materials have wide range of applications from Electronics, Optoelectronics, 

Spintronics, Valleytronics to bio-sensors. 

1.1 Two Dimensional (2D) Materials  

Two dimensional materials received significant attention because of their atomically thin 

nature, which makes the scaling possible without giving rise to the detrimental short channel ef-

fects. Furthermore, these materials provide an unique platform for several interesting features like 

exquisite valley physics, excitonic effects, strain induced phase transition effects, efficient quan-

tum mechanical tunneling etc9. Since the successful isolation and study of the Graphene10, 2D 

materials have attracted a lot of interest. Two dimensional materials is even projected as a post-

silicon alternative4. In two dimensional layered materials, the electrons in a plane are bounded by 

strong covalent force, whereas, the layers are connected by weak inter layer van der Waals (vdW) 

force. This weak vdW force enables the mechanical exfoliation of atomically thin shits and allows 

for the formation of different heterostructures vdW assembly. The absence of dangling bonds en-

sures the high-quality interface and low charge traps across the interface. Graphene is the most 

studied 2D material. 

1.1.1 Graphene 

Graphene is a monolayer chain of carbon, packed into hexagonal honeycomb lattice 

(shown in figure 1.1). The covalent bond within a plane is strong, while the different layers are 

held together by weak vdW force. Graphene has high mobility (>50,000 cm2/Vs at room temper-

ature11,12) and is thermally stable. It has wide area of applications from electronics, spintronics to 



3 

 

 

bio-sensing. But, the absence of intrinsic band gap overshadowed its high mobility and small quan-

tum capacitance13–15. Due to the absence of band gap, it is not possible to use graphene in logic 

devices where the device must act like a switch. Due to the zero-band gap, we cannot get low off 

current to consider it as an off state. Engineering a band gap in Graphene suffered by severe mo-

bility degradation, or required high bias voltages16,17. This limitation of the graphene encouraged 

the scientific community to look for other two-dimensional materials, which have nearly graphene 

like properties along with an intrinsic band gap. 

1.1.2 Transition Metal Dichalcogenides (TMDCs) 

Besides Graphene, a group of 2D materials called Transition metal Dichalcogenides 

(TMDCs) have been studied heavily, because of the graphene like properties alongside the inherent 

bandgap they possess. TMDCs offer inherent band gap with good electronic properties, mechani-

cal flexibility, and chemical & thermal stability. TMDCs have layered structure in the form MX2, 

where M refers to metal (eg. Mo, W, Re, Ta, Ti etc.) and X, the chalcogen (eg. S, Se, Te). MX2 

crystals are hexagonally packed with stacking layers of X-M-X. TMDCs possess strong covalent 

bonds between metal and chalcogen atoms within a layer and those layers are held together by 

weak vdW force. TMDCs possess dangling bond free surface which helps to minimize the perfor-

mance degradation due to interface states18. Recent studies showed the wide area of application of 

TMDCs for low energy devices, digital electronics & optoelectronics19–21. A lot of studies have 

done, which resulted in theories for electron-phonon scattering in TMDCs like MoS2 and WS2. 

Also, strongly correlated electron phenomena such as charge density waves and superconductivity 

was explored for group V TMDCs like TaS2, NbSe2
22. TMDCs based on Groups V and VI metals 

(eg. V, Nb, Ta, Cr, Mo, W etc.) are the most heavily studied due to the diverse permutations of 

stable compounds and electronic behavior23. Furthermore, TMDCs can be prepared at the wafer 
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scale using different deposition techniques like CVD, ALD etc. This increases the practical appli-

cation prospect of the TMDCs24. 

1.1.2.1 Semi-conducting TMDCs 

The high charge carrier mobilities and presence of inherent band gap that enables large 

switching ratios in field-effect transistors (FETs) have made semiconducting TMDCs, specifically 

MoS2, WS2, and WSe2 attractive materials for electronic devices4,19,25,26. Furthermore, successful 

large-scale growth and the stability increase their prospects for practical applications. TMDCs 

possess indirect band gap at bulk state, but the band gap converts to the direct in monolayer limit. 

This indirect to direct bandgap conversion is important especially in optoelectronic applications 

like light emitting diode (LED). TMDCs also represent an interesting platform for fundamental 

studies of light-matter interactions, optoelectronics, and nano-photonics27–31. Figure 1.2 shows the 

hexagonal structure of TMDCs. Figure 1.2b gives the top view of the structure.  

1.1.2.1.1 MoS2  

MoS2 is the most studied 2D TMDCs material. MoS2 is found in nature and is used as a 

lubricant because of its lubricating property. MoS2 has three different structural phases: i) 2H-

phase, which has hexagonal symmetry and semiconducting properties, ii) 1T-phase having tetrag-

onal symmetry and metallic properties and iii) 3R-phased MoS2 with rhombohedral symmetry 

which has semiconducting properties like 2H-phased MoS2. 

Semiconducting MoS2 has indirect band gap with 1.2 eV in bulk state that changes into the 

direct band gap of 1.8 eV in monolayer due to quantum confinement5. Monolayer MoS2 FET 

showed the mobility in the range of 0.1-10 cm2V-1s-1  32,33. But, the phonon-scattering room-tem-

perature mobility for bulk MoS2 was reported 200-500 cm2V-1s-1 34 . With HfO2 as high Κ dielectric 

for the top gate the mobility of the MoS2 was found to be about 200 cm2V-1s-1 32.   
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1.1.2.2 Metallic TMDCs 

Layered sulfides of Group IV (i.e., Ti, Hf, and Zr) also possess interesting semi-metallic 

and semiconducting behavior, but they suffer from a high propensity for non-stoichiometric struc-

ture due to the low energy barriers for intercalation of metal atoms. Group V and VII TMDCs are 

mostly studied for many-body phenomena such as 1T TaS2 for gate-tunable charge density waves 

and 1T’ ReS2 for linear anisotropy in electrical and optical properties5,23,32,35–37.  

Unlike semi-conducting TMDCs, metallic TMDCs are prone to oxidation in presence of 

air. TMDCs like TaS2, TiS2, HfS2, HfSe2 surface reacts to air and displace the chalcogenide atoms 

with oxygen atoms at the atom sites to form oxides. This property of these TMDCs is particularly 

useful to form atomically flat two-dimensional High K dielectrics. 

1.1.3 Transport Properties and Device applications of TMDCs 

Transport properties of 2D semiconductor shows wide variation depending up on the ma-

terials, type of charge carriers and dielectric used. Studies showed the exceptional electronic prop-

erties of graphene based on the unique band structure including the observation of ambipolar be-

havior and high mobility exceeding 15000cm2 V-1 s-1 at room temperature with ballistic transport, 

and shows quantum Hall effect10,38. In case of MoS2, the mobility values of monolayer and multi-

layer MoS2 devices on SiO2 reported by multiple groups were substantially below the Hall mobility 

of bulk MoS2 (100 - 200 cm2 V-1 s-1)32,39,40. Bao et. al. reported ambipolar multilayer MoS2 with 

two terminal field-effect mobility attained to 470cm2V-1s-1 at room temperature on PMMA41. S. L. 

Li et.al. presented thickness dependent interfacial charge scattering of MoS2 FET and showed the 

improvement of field effect mobility with increase of thickness by suppressing the Coulomb scat-

tering originated from SiO2 surface and MoS2 /SiO2 interfaces42. Different efforts to modify the 

SiO2 surface, using high-k dielectric such as HfO2, Al2O3 and h-BN encapsulation have been done 
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for graphene and TMDCs field effect transistor but the mobility values never reached to theoretical 

phonon limited mobility12,39,43–46, which indicates the carrier mobility of 2D channel materials is 

limited by extrinsic scattering from charged impurities at the channel/substrate interface and 

charge traps in dielectric, substrate surface roughness, and remote surface optical phonons origi-

nating from substrate. 

A good transistor layer material should have high enough charge carrier mobility for on 

state current and fast operation of transistor. The layered materials should have reasonable band 

gap to maintain enough on/off current for the operation of transistor by electrostatically switching 

on and off state. On the other hand, sharp switching characteristic is equally important to allow 

high degree of electrostatic control over devices. Flexibility and transparency are also important 

characteristics for future electronics. Two-dimensional TMDCs such as MoS2 and others offer an 

important advantage when compared with traditional bulk electronic materials: their sub-nanome-

ter thickness. Coupled with a bandgap typically in the 1–2 eV range can result in high on/off ratios, 

the extreme thinness of TMDCs allows more efficient control over switching and can help to re-

duce short-channel effects and power dissipation. To achieve these ideal properties, selection of 

channel materials and dielectric materials is exceptionally important. In addition, devices struc-

tures, designs and modification are also important to optimize and modify the 2D thin layer tran-

sistor devices properties. 

1.1.4 Optoelectronic Properties of TMDCs 

TMDCs have indirect bandgap at multilayer structure, which converts to direct band gap 

in monolayer47. This transition from indirect to direct band gap is quite important as it increases 

the quantum yield. The direct band gap increases the probability of electron-hole pair generation 

resulting in better light absorption. The band gaps of the few layered TMDCs depends on the 
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number of layers48,49, which allows the absorption of light of different wavelengths. The stacked 

heterostructure of TMDCs further allows light absorption from wide range of wavelength50. The 

direct band gap monolayer TMDCs exhibit unique properties like strong photolumines-

cence(PL)47, high absorption in the visible range51, valley polarization52,53, and strongly bound and 

charged excitons54–56. Photodetectors made of Monolayer MoS2 displayed strong photoresponsiv-

ity of 880 AW-1 57. The built in electric field of TMDCs is useful to separate photo generated 

electron-hole pairs. Also, strong exciton energies have been reported for monolayer TMDCs due 

to the strong coulomb interactions54–56. 

1.1.6 Challenges of TMDCs 

The channel of 2D materials is thin which needs substrate to support and for the investiga-

tion of its properties we must make electrical connections using metal electrodes. The contact 

metal form barrier with semiconductor channel of 2D materials and the dielectric on substrate 

plays important role to determine the channel properties of the thin 2D materials. To enhance the 

performance of MoS2 (or in general, TMDC channel materials) MOSFET, there are several issues 

that needs to be resolved58: 

• Proper doping of the TMDCs 

• Metal-semiconductor contact effect 

• High K dielectric integration 

1.1.7 Doping TMDCs 

The success of conventional Si-semiconductor relies on the ability to achieve ohmic con-

tacts through substitutional/impurity doping profiles for electron (n-type) and hole (p-type) injec-

tion respectively. The doping for conventional semiconductors is developed for years and is in 

excellent condition, but for 2D channel the doping method is still in early phase. In absence of 
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effective doping schemes, early 2D FETs relied on the use of elemental metals with different work 

functions for carrier injection into the respective bands of 2D channel. There has been some pro-

gress in the doping of 2D materials now. Doping in TMDCs has been realized from the impurities 

used for bulk crystal growth, ambient interaction with intrinsic defects, interaction with substrate 

impurities, adsorption of metals or charge transferring molecules44,59–63. Chalcogen substitution 

and direct substitution of transition metal have also been demonstrated64,65. Some studies doped 

bulk TMDCs using vapor transport methods but to get monolayers mechanical exfoliation had to 

be done66,67. Mn doping in MoS2 has been realized using chemical vapor deposition on inert sub-

strate68. Suh et al. (2014) researched niobium (Nb) doping on MoS2 as a p-type69. Nb atoms are 

doped on MoS2 at the substitutional sites, leading to a degenerating hole density of around 3×1019 

cm−3. Lin et al. (2014) demonstrated the doping of rhenium (Re) and gold (Au) on monolayer 

MoS2 via CVT growth66. 

Some of these doping methods may be selectively apply to limited areas through lithogra-

phy processes, they still may damage the channel through ion impacts. None of these methods 

have applied to degenerately dope the contact area of the 2D materials. Since doping happens 

during the growth of the crystal, it is impossible to dope selective area. But, we can use these 

degenerately doped 2D material along with undoped channel for various applications like p-n junc-

tion or 2D-2D contacts. 

1.1.8 Metal-Semiconductor Contact 

The main problem with TMDCs electronic devices is the contact as it often fails to form 

ohmic contact with the electrode metal. The mismatch in work function between TMDCs channel 

and the electrode metal forms a barrier at the metal semiconductor interface. With Ti (work func-

tion of 4.33 eV) as electrode metal, few layer MoS2 shows strong electron conduction, while p-
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type transport is not observed due to the formation of large Schottky barrier (SB) at the interface. 

In case of WSe2 FET, ambipolar behavior is seen when contacted with Ti metal. As the fermi level 

of WSe2 lies at the middle of the band gap, a relatively small SB forms for both n-type and p-type 

conduction allowing both n-type and p-type conduction. Fig. 1.3 shows the barrier formation at 

metal-semiconductor interface for MoS2 and WSe2 with three different metals. As shown in 1.3(a) 

for MoS2-metal contact, fermi level of the metal is close to the conduction band of MoS2 forming 

small barrier for electron conduction and very large barrier for hole conduction. For WSe2, fermi 

level of metal lies close to the middle of the band gap forming significant barrier for both electron 

and hole conduction. This explains the n-type behavior of MOS2 and ambipolar conduction in 

WSe2. 

 
Figure 1. 1. Schematic diagram of the barrier formation at metal-semiconductor interface70. Three 

metals with different work functions are shown, (a) Metal-MoS2 interface, fermi level of the metal 

is close to the conduction band allowing n-type transport and (b) Metal-WSe2 interface, fermi 

levels of metals are close to the middle of the band gap, forming barrier for both type of conduc-

tion.  

Low resistive ohmic contacts are essential for FETs. However, semiconductors with large 

band gap have trouble in formation of ohmic contact with metal electrodes. There are few ways to 

deal with the problem. Firstly, low resistance ohmic contact can be achieved between metal and 

semiconductor by suitable choice of metal electrode. For n-type semiconductor like MoS2, small 
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work function metal forms ohmic contact. In such case the fermi level of the metal lies close to 

the conduction band of the semiconductor allowing almost zero barrier. However, the work func-

tion of commonly used metal is over 4 eV (Ti, Al) or 5 eV (Pd, Ni). In addition to the small work 

function, the metal should highly conductive as well as thermally & chemically stable. Ca has low 

work function (2.9 eV) but oxidizes easily leading to degradation in performance. It is difficult to 

find the low work function metal satisfying the conditions. Similarly, for p-type semiconductor 

like WSe2, work function of the metal should be large so that the fermi level of the metal aligns 

close to the valence band of the semi-conductor allowing the formation of low barrier. This is 

equally difficult to find such metal. Although, high work function metals made good contacts with 

monolayer WSe2, SB has not been eliminated completely71. Another way to deal with the problem 

is to make Schottky junctions narrow, so that the tunneling current defines the contact resistance. 

Using large ionized impurity doping in semiconductor, the SB height can be decreased and low 

contact resistance can be achieved72. But due to the 2D nature of TMDCs, any attempt to dope it 

results in deterioration of channel.  

1.1.9 Contact Engineering 

Low resistance ohmic contacts between a metal and a semiconductor can be achieved either 

by a) lowering the SB height by suitable choice of contact metals or by b) degenerately doping the 

contact area. In subsections below, we are going to discuss both methods in detail: 

1.1.9.1 Lowering Schottky Barrier height 

Low work function metals like scandium (Sc) have been shown low Schottky barrier height 

and low resistance in MoS2 FETs. However, because of the fermi level pinning, the range for the 

barrier adjustment is small and only applicable if pinning location is close to the band edge. If 

depinning is complete, ohmic contacts can be obtained easily for all TMDCs by selecting a metal 
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with the fermi level lying above the conduction band or below the valence band for n-type or p-

type FETs. Although the origin of the fermi level is not understood fully, it is at least partially 

dependent on metal-semiconductor interactions which induce states within the bandgap near the 

interface73,74. Thus, if an ultra-thin layer of insulator is used to separate metal and semiconductor, 

the insulator attenuates the metal electron wave function before penetrating the 2D semiconductor, 

reduces the density of induced states, which prevents fermi level to moving from charge neutrality 

level75. The dipole formed at the interface also help to decrease the SB height. However, the insu-

lator layer increases the tunneling barrier for the carrier injection. The specific contact resistivity 

of MoS2 channel was found to be reduced in 2-3 orders by the insertion of 1.5 nm Ta2O5 layer due 

to the reduction in SB height from ~95meV to ~30 meV75. But as the thickness of the insulator is 

increased the resistivity is also found to be increased monotonically. 

Local hybridization of 2D semiconductor under metal electrodes also can provide an alter-

native way to ensure low resistive ohmic contacts. This can be done by using a strongly interacting 

metal and semi-conductor through covalent bonding. The strong covalent bonding of Mo contacts 

with monolayer MoS2 has significantly reduced the SB height and improved contact resistance75. 

In contrary, the covalent bonding between MoS2 and metals like Ti, Ni etc. results in higher con-

tact resistance76. 

Another approach to reduce SB height is by transforming the 2D semi-conductor under-

neath the contacts into metal by phase engineering. About 60 -70% area of monolayer MoS2 con-

verted from semiconducting 2H phase to metallic 1T phase on immersed in n-butyl lithium. The 

n-butyl lithium donates charge to MOS2, converting it to 1T state. The 1T MoS2 under contact 

forms sharp boundary with 2H channel and eliminates the SB, improving the contact resistance 

values as low as 200 Ωµm77,78. 
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Edge contacts are also a favorable option over top contacts for lowering SB heights because 

of favorable in-plane carrier injection with a high degree of covalency and small tunnel barrier79,80. 

As each layer can form edge contact, charge can be efficiently injected deep into 2D materials. 

Edge contacts are beneficial for scaling purposes as well as no overlap region is required. However, 

the fabrication of edge contacts is not easy with current techniques. 

1.1.9.2 Doping of Contacts 

Although different doping methods are studied over the years to achieve low resistance 

ohmic contacts for 2D TMDCs material, most of these methods suffer from the lack of air or 

thermal stability. Furthermore, selective area doping is not possible as in the case of Si-based 

FETs. In Si-based devices heavy ion implantation doping of the source and drain area forms highly 

transparent barrier free contacts with the metal. But in case of TMDCs channel, due to the 2D 

nature of the material it is not possible without compromising the structural integrity of the chan-

nel. In section below, we will discuss the methods that have been used to dope the contacts for 2D 

TMDCs channel.  

1.1.9.2.1 Ionic liquid gating   

In this approach to improve the contacts of MoS2 FETs, Ionic Liquid (IL) gating is used, 

which forms an electric double layer with high capacitance at MoS2/metal interface. As a result, 

IL gated MoS2 FETs demonstrate high tunneling efficiency and thus low contact resistance due to 

the strong band-bending occurring at MoS2/metal interface. 

1.1.9.2.2 Low resistance Graphene contacts tuned by double layer Ionic liquid 

In this approach, Graphene has been used as a tunable electrode material to achieve low 

resistance ohmic contacts for ultrathin channel of TMDCs. Because of the large band gap of 

TMDCs material, large range tunability is required in order to achieve true ohmic contacts for both 
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n-type and p-type conduction. In this method, the large electric double layer (EDL) capacitance of 

Ionic liquid (IL) tunes the carrier density of graphene and forms low resistance contacts with the 

TMDC channel. An ionic liquid gate induces high carrier density in graphene in the order of 1014 

cm-2, which is an order more than using a conventional solid-state gate dielectric71. 

1.1.9.2.3 2D-2D contact electrode  

One of the useful advantage of 2D TMDCs is the ability to form heterostructures by stack-

ing different materials in vdW assembly. Since TMDCs do not possess dangling bonds they form 

ultraclean and sharp interfaces. Thin layers of MoS2 and WSe2 have been stacked in vdW assembly 

to form atomically thin p-n junction84–87. The built-in potential in these thin atomic p-n junction is 

dropped across vdW gap due to the absence of obvious depletion region as in the case of bulk p-n 

junctions. The charge transport across the junction is dominated by the tunneling current through 

the vdW gap. This results in fast charge transfer across the junction, which is verified by recent 

findings of strong photocurrents and quenching of photoluminescence signals in study of 

MoS2/WSe2 p-n junctions. Low resistance ohmic contacts have been observed for both electron 

and hole transport for WSe2 FETs using substitutionally doped 2D contacts. 

1.1.10 High Κ Di-electric Integration 

In past few decades, we experienced a heavy reduction in dimension of electronic devices. 

This reduction in the size of devices is achieved by reducing the size of key components of those 

circuits: The 'MOSFET'. This reduction in dimension allows the integration of a large number of 

transistors on a chip, enabling higher speed and reduced cost. The scaling of MOSFET follows the 

famous Moore's Law88. As shown in figure 2, Moore's law predicts exponential increase of tran-

sistors density on a chip.  
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The scaling of MOSFET results to smaller devices in smaller area, consumption of less 

power and decrease in cost per transistor. But, this downscaling of MOSFET cannot go forever, 

as it is limited by short channel effect. Short channel effect depends up on the thickness and die-

lectric constant of the used dielectric. Gate oxide thickness must be reduced as channel length is 

reduced in order to avoid short channel effects89. As a thickness of SiO2 gate insulators is reduced 

to few atomic layers, charge carriers can flow through the gate dielectric by a quantum tunneling 

mechanism90,91. This mechanism involves the tunneling of charge carriers through a trapezoidal 

energy barrier92. It is seen that the tunneling probability increases exponentially as the thickness 

of SiO2 layer decreases90,92. In addition to the gate leakage current, the reduction in width of gate 

oxide also causes a reduction in the ON/OFF ratios89. 

  
Figure 1. 2. Graphical representation of Moore's law93. 

During the operation of MOSFETs, charge carriers flow through the device resulting the 

generation of defects in SiO2/ Si interface94–96. When a critical density of defect is reached, break-

down of the gate layer occurs, resulting in the failure of the device97–99. The SiO2 thickness limit 

was found to be 2.2 nm at room temperature and 2.8 nm at 150̊ C94,97.  
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1.1.11 High-Κ Dielectrics 

The electrostatic control of the channel by the gate is achieved through capacitive coupling 

between the gate and channel region through the gate dielectric. Scaling requires reduction in the 

depth of source and drain regions by the same factor as the gate length, as this would require less 

control over channel. As the capacitance of the system depends inversely on the thickness of the 

dielectric, this can also be done by decreasing the thickness of the dielectric. The inefficiency of 

SiO2 to decrease further as per device scaling required the replacement of the insulator with high 

Κ ( Dielectric Strength ) dielectric oxides97, to increase its thickness and thus preventing the charge 

carriers from tunneling while retaining the electronic properties of SiO2 layer. The metal oxide 

semiconductor structure in MOSFET acts like a parallel plate capacitor. The capacitance of the 

structure is given as,  

𝐶 =
𝐴𝜀𝑟𝜀0

𝑡𝑜𝑥
  

Where, A is the capacitor area, Ԑr is the relative dielectric constant of the material, Ԑ0, the 

permittivity of free space (8.85 x 10-12 Fm-1), and tox is the gate oxide thickness.  

As SiO2 has approached its limit, an alternative way to increase capacitance is to use an 

insulator with higher relative dielectric constant than SiO2 (κ = 3.9 for SiO2). Then we can use the 

thicker gate layer and hopefully can reduce the leakage current and improve the reliability of the 

gate dielectric. The thickness of hig-κ dielectric is usually expressed in terms of equivalent oxide 

thickness (teq). The equivalent oxide thickness of a material is defined as the thickness of SiO2 

layer that would be required to achieve the same capacitance density as the high K material in 

consideration,    
𝑡𝑒𝑞

𝜀𝑟,𝑆𝑖𝑂2
=

𝑡ℎ𝑖𝑔ℎ 𝑘  

𝜀𝑟,ℎ𝑖𝑔ℎ 𝑘
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Where, thigh k and Ԑr,high k are the thickness and dielectric constant of high K dielectric ma-

terial. Recently, a lot of efforts have focused to investigate high-K gate dielectrics98–105
. The equiv-

alent oxide thickness is found to be 1.1 nm (for AlxZr1-xO2 layer). Also, the leakage current is 

reduced by several orders of magnitude. High-κ dielectric seemed to be resolving the scaling prob-

lem of SiO2, but the high K dielectric material, which could replace SiO2 as a gate dielectric should 

satisfy few requirements106: 

• thermal stability 

• preventing the formation of thick interfacial low-K dielectric layer 

• low density of intrinsic defects at Si interface 

• sufficient gate dielectric lifetime 

• sufficiently large energy band gap, to reduce leakage current 

1.1.11.1 Possible Candidates 

The hexagonal boron nitride (hBN) is an excellent choice for the substrate as it is atomi-

cally smooth and have low interface traps but the low dielectric constant limited its use in form of 

dielectric in FET devices. There are several high-κ dielectrics, which have been studied for replac-

ing SiO2. A list of dielectrics and their properties is given in table 1.1.  

The most likely high κ dielectrics as a replacement of SiO2 are zirconium dioxide (ZrO2)
107, 

hafnium dioxide (HfO2
108,109), aluminium oxide (Al2O3

110), titanium dioxide (TiO2
111), tantalum 

pentoxide (Ta2O5
112,113) etc. The oxide film growth of the dielectric thin films is critical as ex-

tremely reliable high quality thin dielectric films are required. Several thin film growth techniques 

have been used such as thermal evaporation, atomic layer deposition (ALD), chemical vapor dep-

osition (CVD), pulsed laser deposition (PLD), and molecular beam epitaxy (MBE)114–118. 
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Table 1. 1. List of High K dielectrics 89 

1.1.11.2 Challenges with High K Dielectric Integration of TMDCs 

For the enhancement of the device, TMD as channel, the growth of conformal, uniform 

high K dielectric is necessary. The high K dielectric integration study so far has been based on 

different growth methods (CVD, ALD, PLD, MBE, etc.). With these complex growth methods, 

the interface has always been issue. ALD is supposed to be more reliable deposition in case of 

TMDs. McDonnell et. al., (2013) deposited of HfO2 on the MoS2 surface using Atomic layer dep-

osition (ALD) method119, and found that the ALD on MoS2 was not uniform. They could not detect 

covalent bonding between the HfO2 and MoS2. In another study, when 15-17 nm HfO2 is deposited 

by ALD, island type growth was observed resulting in non-uniform films120. In their study, 

Lembke et al., (2015)  found that, due to the absence of out of plane covalent functional group in 

MoS2, surface functionalization is needed to fabricate scaled two-dimensional layered devices us-

ing ALD8. The problem of high K dielectric integration of TMDCs has not been resolved yet. In 



18 

 

 

this dissertation, we will discuss a new approach to form atomically thin High K dielectric from 

thermal oxidation of the semi-metallic TMDCs. 

1.2 Scope of the Study 

This dissertation is focused on developing new methods to fabricate TMDC based 2D elec-

tronic devices such as p-n junction diodes and FETs. We can divide this work into two parts: i) 2D 

p-n junction diodes and ii) High K dielectric integration in 2D electronics. In first part, we fabri-

cated 2D p-n junction diodes (homo/hetero structures) using heavily p-doped (Nb-MoS2) and 

slightly n-doped (MoS2/WSe2) semiconducting TMDCs. Chapter 3 describes in detail the fabrica-

tion and characterization of atomically thin p-n junction diodes made from 2D TMDCs. In the 

second part, we developed a new approach to achieve ultrathin high K dielectric using thermal 

oxidation process. We chemically transformed the metallic TMDCs into their oxides, character-

ized them and used them as a dielectric material in FETs with semiconducting TMDCs as the 

channel. In Chapter 4, we successfully converted TaS2 into Ta2O5 using thermal oxidation process 

and used as a high K dielectric in MoS2 FETs. We followed the same method of oxidation for 

another metallic semiconductor in Chapter 5, where we successfully converted HfSe2 into HfO2 

and measured the dielectric constant and the leakage current. Further characterization of chemi-

cally converted HfO2 and its potential application in FETs is described in Future works section. 
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CHAPTER 2: EXPERIMENTAL METHODS 

This dissertation is focused on the study of two-dimensional materials. During the period 

of this dissertation, we studied different devices including 2D-2D p-n junction diodes, Metal In-

sulator Metal junction diodes, Field effect transistors etc., based on two-dimensional semiconduc-

tors and ultrathin dielectrics converted from 2D semiconductors along with Graphene and 

hexagonal Boron Nitride (h-BN). We fabricated those devices and characterized to understand 

them. In this chapter, we will discuss in detail about the fabrication process of the devices that we 

studied and the techniques used to characterize them. This chapter is divided into two parts; in the 

first part, we will discuss about the device fabrication and in the second part we will talk about the 

characterization technique. 

2.1 Device Fabrication 

Our study mostly used the two-dimensional materials as a channel or dielectric material 

for the purpose of device fabrication. We used Si/SiO2 as the substrate for device fabrication. We 

cleaned the substrate with Acetone, Isopropanol (IPA) and Deionized (DI) subsequently in ultra-

sonic bath. After cleaning, the substrate is annealed in ULVAC MILA-5000 annealing tool. We 

used the mechanical cleavage technique to exfoliate the few-layer samples on low residue scotch 

tape from the bulk sample and transferred to the substrate. After assembling the required structure 

of the device, we defined electrodes on the device with the help of e-beam lithography, and finally 

deposited metal on those electrodes to make electrical connections. The sections below will ex-

plain each step of the fabrication in detail. 

2.1.1 Crystal synthesis 
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WSe2, Nb-WSe2 and Nb-MoS2 crystals were synthesized by chemical vapour transport us-

ing iodine as the transport agent. MoS2, Graphite and hBN crystals were purchased from manu-

facturers SPI Supplies and 2D semiconductor supplies. All TMDC crystals were synthesized by 

chemical vapour transport using iodine as a transport agent. For our study, high-quality single 

crystals were provided by Dr David Mandrus' group at the University of Tennessee. In case of 

doped samples, 0.5% of Niobium (Rhenium) was used as substituent atoms for p-doping (n-dop-

ing)69. 

2.1.2 Substrate preparation  

We used degenerately doped silicon substrate with 270 nm thick oxide layer with prefab-

ricated gold alignments, as a substrate. We first cleaned the substrate by sonicating it in acetone 

for 20 minutes followed by sonicating in Isopropanol (IPA) for another 20 minutes. acetone helps 

to remove organic polar residues, while Isopropanol helps to remove non-polar residues. Both 

acetone and IPA evaporates at a faster rate and in the process may redeposit remnants. In the end, 

we cleaned the substrate with deionized (DI) water to completely wash out those residues and then 

dried by the jet of inert gas (N2/Ar). After cleaning the substrate, we examined them under optical 

microscope to ensure the condition of the substrate. The substrate having residue on it, or without 

alignment marks, or having some other problems were eliminated. The well dried substrate was 

then further cleaned by annealing in vacuum. Annealing of the substrate helps to remove the or-

ganic residues and moisture absorbed at the surface of the substrate from the atmosphere. We used 

ULVAC MILA-5000 annealing tool to anneal the substrate. The substrate were then annealed at 

600° C for 10 minutes with passing forming gas for 2 minutes, when temperature of the substrate 

just reaches 600° C.  
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Figure 2. 1. ULVAC MILA-5000 annealer.  

2.1.3 Sample Preparation 

Two-dimensional layered materials are strongly bounded in the plane by a covalent bond, 

but the inter-layer attraction is weak due to the presence of long-range van der Waals force. Due 

to the weak interlayer attraction, the layers can be peeled off easily. We used mechanical cleavage 

method10 to exfoliate few layers TMDCs material on scotch tape. For this, we took a small bulk 

crystal of the material and peeled off the layers repeatedly for several times until we get sample 

thinned to few layers. We then transferred the samples to the substrate in different ways per the 

need. The different methods we used to transfer sample to substrates are explained below: 

2.1.3.1 Exfoliation on substrate 

Most of the time, we transferred the exfoliated sample on cleaned Si/Sio2 substrate directly. 

We placed the substrate on the scotch tape with the alignment side of the substrate over the sample 

and pressed gently for few minutes. This will transfer the sample from scotch tape to the substrate. 

Then we examined the substrate under the optical microscope and located thin uniform samples 

based on colour contrast. To get the exact information about thickness and uniformity, we did 

AFM characterization later. 
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Figure 2. 2. Schematic diagram representing mechanical exfoliation of two-dimensional TMDCs 

sample. a) a small portion of bulk material is taken on the scotch tape b) peel off repeatedly the 

sample until we get few layers thick c) after getting few layers thick sample, scotch tape is stamped 

over the substrate and pressed uniformly for few minutes d) scotch tape is gently removed, samples 

are now attached to the substrate.  

2.1.3.2 PDMS assisted transfer 

When we need to transfer one 2D sample over another, we cannot use direct exfoliation to 

the substrate method. In such cases, we used PDMS assisted transfer method. PDMS is a Silicon-

based organic polymer, known for its viscoelastic properties. PDMS can be used as an elastic 

stamp to transfer samples of nanometer dimension. The PDMS patches were prepared from SYL-

GARD 184 SILICONE ELASTOMER kit. It has two parts: Elastomer base, and curing agent as 

shown in Fig. 2.3. 

 

Figure 2. 3. Sylgard 184 silicone curing agent and elastomer (respectively from left to right). A 

mixture of these two is spin coated and baked to prepare PDMS polymer. 
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A mixture of 184 silicone elastomer and curing agent with the weight ratio of 10:1 is thor-

oughly mixed and the mixture is placed in a vacuum chamber for 20 minutes to remove air bubbles 

from the mixture. For one batch, we mixed 7 gm of elastomer with 0.7 gm of the curing agent.  

After 20 minutes in vacuum, the mixture is spin coated onto a clean polished 4 inches silicon wafer 

at a spin rate of 350 rpm for 35sec. The thickness of PDMS was approximately 300-500µm. We 

placed the coated wafer onto a hot plate to bake at 80°C for 30 minutes in air and left another 30 

minutes to cool down121. As the PDMS patch is prepared on the wafer, we cut down the patch into 

small pieces for the ease of handling. 

 
Figure 2. 4. Schematic diagram showing the process of dry transfer Sample transfer using DMS 

layer a) PDMS patch with the sample is put on the glass slide b) With the help of micromanipulator, 

the sample is transferred to the substrate. 

We placed small patches of PDMS above the exfoliated layer of the sample on scotch tape, 

this would transfer the sample from scotch tape to the PDMS patch. We located the sample under 

an optical microscope and transferred to the precise location with the help of micromanipulator. 

After transfer, we annealed the substrate at 250˚ C for 30 minutes in vacuum to remove any residue 

introduced during the transfer and increase the attachment.  

2.1.3.3 PC pickup  

Another method, we extensively used for sample transfer is PC pickup method. This 

method enables to transfer sample which is already on the substrate, to the precise location of 

another substrate. This method is very useful when you needed thinner samples to transfer. Usu-

a 
b 
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ally, the sample exfoliated on PDMS are thicker than those exfoliated on the substrate. We pre-

pared PC solution by dissolving 0.18 gm Polycarbonate (PC) on 3 gm of Chloroform uniformly. 

We applied a layer of PC on the substrate and kept a patch of PDMS covering the sample contain-

ing a portion of the substrate. We carefully removed the PC layer from the substrate except the 

area covered by the PDMS patch. We scratched along the edge of PDMS and applied Deionized 

(DI) water. The substrate surface being hydrophobic, DI water helps to pick up the sample from 

the substrate. Then, we carefully picked up PDMS along with the PC layer containing the sample. 

We transferred the sample to the desired location with the help of micromanipulator. For this 

method, we applied heat after touching down to melt the PC layer. Then the substrate was im-

mersed in chloroform for 10-15 minutes to remove PC layer. The substrate was then blow dried 

with inert gas jet and annealed at 250˚ C for 30 minutes in vacuum.  

2.1.4 Thermal Oxidation  

Some of our projects are based on the thermal oxidation of TMDCs material. We used the 

heating method to oxidize TaS2 (HfSe2). We heated the TaS2 (HfSe2) of different thickness for a 

different period. We monitored the change in colour contrast and thickness of the sample. After 

few trials, we realized, for TaS2 (HfSe2) heating at 300˚ C for 3 hours is sufficient to convert it to 

oxide. We exfoliated sample on the substrate and located them with the help of an optical micro-

scope. We heated the substrate with the sample in it to 300° C for 3 hours in ambient condition. 

The sample was characterized by AFM before and after heating. Figure 2.5 shows an optical image 

of the sample before and after heating. Figure 2.5a shows the TaS2 sample immediately after ex-

foliation. The sample is then heated on a hot plate for 3 hours at 300° C. Figure 2.5b is the image 

of the same sample after oxidation. Significant change in color contrast of the sample is seen due 

to the phase change of the sample. This fact is supported by TEM, XPS characterization as well. 
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Figure 2. 5. Thermal oxidation of TaS2. a) TaS2 sample immediately after exfoliation b) Thermally 

oxidized TaS2 after heating on a hot plate at 300° C for 3 hours.  

2.1.5 Electrode Fabrication 

To measure the electrical properties of the device, we fabricated the electrodes on the sam-

ple to make electric connections. The fabrication process involves several steps: coating resist, 

designing electrodes, printing those designs on the resist, removing resist from the selective area, 

metal deposition and finally lift off metal from the area except the electrodes. These steps are 

explained in detail below: 

2.1.5.1 PMMA coating  

Polymethyl methacrylate (PMMA) is a polymeric material that is commonly used for 

various imaging and non-imaging microelectronic applications. It is used as a positive resist for e-

beam lithography. Upon exposed with an electron beam, the polymer chain will be broken. That 

broken chain will be easily dissolved in developer solution exposing the area to deposit metal on. 

In this way, we can selectively choose the area and deposit metal for electrode fabrication. The 

substrate was spin-coated with 2 layers of 495A4 PMMA followed by a single layer of 950A2 

PMMA at 4500 rpm. Each coating layer was followed by baking the substrate on a hot plate at 

180˚ C for 5 minutes. The thickness of 3 layers of PMMA was 360 nm. 

  

b a 
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2.1.5.2 Electrode design and E-beam lithography  

We used Nano-pattern generation system (NPGS) AUTOCAD software to draw the elec-

trode pattern that needed to write on the sample. With the help of the optical image, we defined 

the area of the sample, to be written electrode upon. We used the graph, generated using NPGS, to 

write electrodes on the substrate by e-beam lithography. E-beam lithography uses an electron beam 

to write a specific pattern on the substrate as directed by the design provided. Although e-beam 

lithography system is slow and little costly, it has already been commonly used in semiconductor 

industry for patterning a smaller feature size. The dedicated e-beam lithography instruments are 

expensive. Alternatively, SEM with dedicated e-beam writing column provides the solution at 

moderate pricing. Figure 2.6 shows the SEM system with the dedicated e-beam writing column 

attached to it.  

 

Figure 2. 6. Hitachi S-2400 Scanning Electron Microscope attached with E-beam writing column. 

It has the maximum accelerating voltage of 25 KV. 

We used Hitachi S-2400 SEM system equipped with dedicated e-beam writing column to 

write the lithography patterns. In an SEM, a highly focused beam of electrons emitting from an 

electron gun travels through a vacuum and are guided by electromagnetic lenses. The electrons 

beam hit the substrate surface coated by polymer and interact with it to break its bond. The polymer 

area which is interacted with electrons beam is easily soluble in organic solvent. We optimized the 
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SEM by adjusting beam current, fine focus with minimizing astigmatism of the focused electron 

beam and aligning the alignment marks on the substrate. We used the area dose of 350 µc/cm2 and 

line dose 15 µc/cm to write the pattern. When electron beam hits a certain area of the substrate, 

the polymer chain of the PMMA covering that area will be broken, which reacts with the developer 

solution and dissolves in the solution exposing the area. After e-beam writing is done, the substrate 

was dipped in MIBK/MEK developer solution for 1 minute to dissolve the broken loose PMMA 

particles and open the specific design electrodes. Figure 2.7 shows the e-beam pattern written on 

a substrate. 

 

Figure 2. 7. Optical image of a device showing e-beam pattern a) at 10X magnification b) at 100X 

magnification. The pattern was developed in MIBK/MKE developer solution for 1 minute after e-

beam writing. 

2.1.5.3 Metal Deposition 

We used BJD-1800 metal evaporator (shown in figure 2.8) to evaporate the metals to tailor 

the electrodes. The substrate was adjusted horizontally in BJD chamber. The chamber pumped 

down to the pressure of ~10-6 torr and deposited metal electrodes with sufficient slow deposition 

rate. The metal deposition was done by evaporating the metal normal to the substrate without ro-

tation for easy lift-off. E-beam with proper frequency and current to hit the targets metals (con-

tained in crucible) and get the metal evaporated to deposited on the target areas. For the electrodes, 

we deposited 5 nm of Ti followed by 45 nm of Au at the deposition rate of 1A°/sec. 

a b 
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Figure 2. 8. BJD 1800 e-beam metal evaporator. 

2.1.5.4 Lift-off 

During metal deposition, the whole area of the substrate will be covered with the metal, so 

we should remove the metal from all the area except the electrodes before characterizing the de-

vice. This process is called lift-off. For lift-off, the substrate would be dipped in acetone. Acetone 

reacts with the PMMA layer and dissolves it. The bottom layer of PMMA easily dissolves in ace-

tone than the upper layer making it easy for Acetone to undercut the metal deposited in the 

unnecessary area and make it free to float. In short time all metal except deposited on the pattern 

created by e-beam would be removed. Figure 2.9 shows the optical image of a device after lift-off.  

 

Figure 2. 9. Optical image of a device after lift-off. The substrate was dipped in acetone for 5-10 

minutes to lift-off the metal 

Figure 2.10 shows the flowchart of the whole process of the electrode fabrication. 
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Figure 2. 10. Flowchart of the electrode fabrication. a) 2/3 layers of PMMA spin coating followed 

by baking at 180° C for 5 minutes after each layer coating, b) writing pattern on the substrate using 

electron-beam, c) developing the lithography pattern by dipping the substrate in the developer 

solution. The cut-out parts are the pattern designed to deposit metal on to form the electrodes, d) 

depositing Ti/Au:5nm/45nm on the substrate, e) removing the metal from all the area except the 

electrodes by dipping the substrate in acetone. 

2.2 Characterization Techniques  

In order to study the various characteristics of the two-dimensional TMDCs material, we 

used different characterization tools. Initially, we used Optical and Atomic Force Microscope to 

get the information about their shape, size and topography. We fabricated the devices of those 

materials and then carried out the Electrical characterization. In this section, we will discuss in 

detail about the characterization techniques we used in this work. 

a

e

d

c
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2.2.1 Optical microscope 

An optical microscope uses visible light to magnify objects for observation. It uses a small 

and spherical objective lens which has a shorter focal length and another longer focal length lens 

called eyepiece. The object is placed near to objective lens and observes through the eyepiece. The 

microscope brings an object’s image into focus at a close distance within the tube by objective 

lens and eyepiece magnifies the image. Aside from a light source, a microscope also has a con-

denser which focuses light from the source to a small, bright spot of the specimen. It has fixed 

eyepieces and interchangeable objective lenses with different magnification. It can magnify in-

credibly small areas or object when the objective lenses are changed from flat with low magnifi-

cation lenses to rounder with high magnification ones. The image quality seen by using an optical 

microscope is assessed based on brightness, resolution and contrast. The optical microscope shows 

different contrast for different thickness 2D materials. The TMDs flake and other 2D flakes trans-

fer on the substrate is observed under optical microscope to identify rough thickness of the better 

flakes. The optical microscope is used to estimate the thickness and identify the cleanness and 

uniformity of the sample. 

 

Figure 2. 11. Optical microscope  
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2.2.2 Atomic Force Microscope (AFM)  

AFM is a kind of scanning probe microscope. A sharp probe called tip is moved close to 

the surface of sample under study in non-contact mode. The tip is connected to a cantilever. The 

tip scans across the sample surface and comes into force of interactions. As the cantilever is dis-

placed by its interactions with the surface, the reflection of the laser beam will be displaced on the 

surface of the photodiode and the image is constructed. The surface topography is fully determined 

by the interacting forces during scan. AFM can measure a roughness of a sample surface, help to 

determine shape & the dimensions of sample, identify atoms at a surface, evaluate an interaction 

between a specific atom and its neighboring atoms, distinguish change in physical properties arisen 

from a change in an atomic arrangement through the atomic manipulation, help to distinguish can-

cer cells and normal cells based on a hardness of cells, evaluate an interaction between a specific 

cell and its neighboring cells in a competitive culture system.  The identified better sample flakes 

under optical microscope is characterized by noncontact mode XE-70 atomic force microscope 

(AFM). The surface topography of AFM image is analyses to determine the dimensions (length, 

width, thickness etc.), surface cleanness and surface roughness of the identified sample. XEI image 

processing software is used to process the AFM image. The surface smoothness is compare by 

root mean square value of PSD. 

  

Figure 2. 12. AFM setup (a) & (b). Schematic diagram of AFM working principle.  
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2.2.3 Electrical Characterization 

To measure the electrical properties of the device, we used Keithley 4200 Semiconductor 

parameter analyzer. The device after defined Ti/Au electrodes is kept in Lakeshore cryogenic 

probe station chamber and pumps it overnight to reach the pressure down to ~1x10-6 torr. The 

Keithley 4200 parameter analyzer is used to characterize its electrical properties at different tem-

peratures varying from 77K to 300 K by using liquid nitrogen. Mainly we measured the current 

voltage relationship and gate voltage dependence for the field effect transistors.  

 

Figure 2. 13. Lakeshore cryogenic probe station for low temperature measurement system 

2.2.4 Capacitance Voltage (C-V) measurement  

We used HP 4284A precision LCR meter for our C-V measurements. HP 4284A precision 

LCR meter measures two components of the complex parameters at the same time of a measure-

ment cycle. The primary measurement parameters are: absolute value of impedance (|Z|), absolute 

value of admittance (|Y|), inductance (L), capacitance (C), resistance (R), conductance (G) and the 

secondary measurement parameters are: dissipation factor (D), quality factor (Q), equivalent series 

resistance (RS), equivalent parallel resistance (RP), reactance (X), susceptance (B), phase angle 

(θ). The HP 4284A precision LCR meter is used to measure the capacitance of the dielectric used 

to fabricate devices. It has frequency range from 20 Hz to 1 MHz with different mode of measure-

ments. MIM junction was designed by sandwiching dielectric between two metal electrodes. Ca-

pacitance was measured with sweeping the bias voltage at different frequencies level by applying 
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low AC system voltage (50 mV to 100 mV). The capacitance is measured in Cp:D configuration 

to minimize the parasitic capacitance effects. To measure the capacitance more precisely, the rec-

orded measure value was set at least average of 8 consecutive measurements. 

 

Figure 2. 14. Alignment 4284A precision LCR meter 

2.2.5 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) measurement was performed using a Kratos Axis 

Ultra XPS system with a monochromatic Al source. The samples were mechanically exfoliated 

from bulk crystals right before XPS measurement and then immediately inserted into the XPS 

chamber to avoid oxidation. Pass energy of 20 eV with 0.1 eV scanning step was used for photo-

electron detection. The C 1s reference line at the binding energy of 284.6 eV was used to calibrate 

the charging effect.  
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CHAPTER 3: GATE-TUNABLE P-N JUNCTIONS FORMED BETWEEN 

DEGENERATELY P-DOPED AND UNDOPED TMDCS 

3.1 Background and Motivation  

Semi-conductor p-n junctions are the basic building blocks of electronic and optoelectronic 

devices122–124. These devices are heavily used in applications ranging from rectifying diodes, fre-

quency mixing diodes, tunneling diodes, light emitting diodes to laser diodes125–127. In conven-

tional p-n junction diodes, there exists a charge-carrier depletion region on both sides of junction 

generating built in potential. Carrier transport across the junction occurs by the diffusion and drift 

processes. Recently, layered materials with strong in-plane chemical bonds and weak out-of-plane 

bonds have attracted much attention for Nano-electronic applications38,128–130. Their excellent elec-

tronic and optoelectronic properties along with their flexibilities allow for their use in high-perfor-

mance nanodevices, such as tunneling transistors131, photodetectors132–134, photo responsive 

memory devices135, light-emitting devices136, and Integrated circuits137,138. With the discovery of 

these two-dimensional material, it is now possible to fabricate a junction diode at ultimate thick-

ness. Lack of the dangling bond on the surface of these 2D materials made it possible to create 

high quality heterointerfaces50,139. The availability of materials with different band gaps and work 

functions helps for the band engineering of these stacked structures.  

Heterostructures based on bulk materials have covalent bonding at the interface that pins 

the band offsets at the tunneling interface, irrespective of doping level or bias voltage unless an 

insulator is inserted between. But in case of two dimensional vdW assembly, potential can be 

dropped across the vdW gap, allowing the bands of the two material components of freely move 

with respect to each other at the junction by the applied drain voltage or electrostatic doping by 

the two gates140. vdW assembly provides a new degree of freedom in terms of modulation of the  
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band structure to form atomically sharp vertically stacked heterojunction131. Recently, heterostruc-

tures based on graphene, hBN and TMDCs have been studied extensively. Studies showed the 

feasibility of vertical tunneling of electrons in vdW heterostructures, but due to the lack of intrinsic 

band gap in graphene, tunnel devices cannot be turned off. Few studies focused on MoS2/WSe2 

heterostructures. Artificially stacked MoS2/WSe2 heterostructures exhibit gate controlled rectifi-

cation diode behavior84,141. However, these heterostructures showed the saturation in reverse bias 

tunneling current and forward bias current, because of the parasitic resistance of the contacts, es-

pecially for WSe2
141. The reverse current in these devices has been largely limited by a lateral 

depletion region instead of the true vertical junction because of the inadequate doping of at least 

one of the constituent69,124. To realize the intrinsic properties of TMDC-based p-n junction, it is 

necessary to use heavily doped TMDCs to form p-n junctions, so that low-resistance ohmic con-

tacts can be achieved. Electrostatic gating can be used to induce high carrier concentration in the 

n-type (or p-type) semiconductor forming the p-n junction, which unavoidably leads to the carrier 

depletion in p-type (or n-type) semiconductor and consequently a substantial Schottky barrier at 

one of the contacts. In our study, we fabricated the vdW assembly p-n junction consisting of de-

generately p-doped TMDC layer and undoped MoS2. The electron concentration in undoped MoS2 

can be modulated by a gate voltage for a large range without affecting the hole concentration in 

the degenerately p-doped TMDC layer. For homojunction structure, we used Nb-doped MoS2 with 

the undoped MoS2 and for heterostructure we used the Nb-doped Wse2 with undoped MoS2.  

3.2 Results and Discussion 

For the study of homojunction and heterojunction p-n junction diodes, all the samples were 

prepared using mechanical cleavage method10. Undoped MoS2 crystal were purchased from SPI 

Supplies and Nb-doped Mos2 and WSe2 crystals were synthesized by chemical vapor transport 
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using iodine as the transport agent. 0.5% of Nb was used as substituent atoms for p-doping. The 

undoped MoS2 samples were exfoliated directly on the substrate, while doped WSe2/MoS2 were 

exfoliated on PDMS and transferred using dry transfer process. For heterojunction diode, Nb-

doped WSe2 were stacked over undoped MoS2, exfoliated on the substrate. Similarly, for homo-

junction diode, Nb-doped MoS2 were stacked over undoped MoS2. After each transfer the substrate 

was annealed in vacuum for 30 minutes at 250° C.  

 
Figure 3. 1. a) Schematic diagram & b) optical micrograph of the heterojunction p-n junction 

diode, Nb-doped WSe2 is stacked on the top of undoped MoS2; c) Schematic diagram & d) optical 

micrograph of the homojunction p-n junction diode, Nb-doped MoS2 is stacked on the top of un-

doped MoS2. The overlap area between the doped and undoped sample constitute the p-n junction 

diode.  

The samples were characterized using AFM before and after making devices and were 

found atomically smooth and pristine. Non-contact mode Park System XE-70 atomic force micro-

scope (AFM) was used to study the surface characteristics of the sample. 
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Figure 3. 2. AFM image of undoped MoS2. a) Thickness measurement, the thickness of the sample 

is shown 8.5 nm, b) 3-dimensional view of the 2um X 2um area scan of the same sample  

Figure 3.2 shows an AFM image of the undoped MoS2 sample used to fabricate the device. 

The thicknesses of the samples were ranging from 6 nm to 12 nm. The peaks and dips seen in 

image 3.2b represent the non-uniformity present at the surface. Non-uniformities may arise due to 

several reasons such as presence of some residue from the scotch tape during exfoliation, residue 

trapped between the substrate and the sample and so on. We do annealing to remove the residue. 

It helps to decrease the non-uniformities but cannot eliminate it entirely. The root mean square 

fluctuation is seen in the order of hundreds of pm ensuring the atomic smoothness and pristine 

surface.  

 

Figure 3. 3. AFM image of vertically stacked heterojunction diode.  



38 

 

 

The doped samples were stacked on the top of undoped MoS2 using PDMS assisted dry 

transfer technique. After transfer, the substrate was annealed at 250° C for 30 minutes and again 

imaged using AFM. Figure 3.3 shows the AFM image of a vertically stacked device. We saw 

similar bubbles when we scanned the junctions after transfer second layer over MoS2. Besides the 

bubbles, the overall junction area looks clean as seen in figure 3.3. 

To measure the electric properties, electrodes were fabricated for the electrical connections. 

Nanometer Pattern Generation System (NPGS) was used to design the electrodes pattern. Two 

layers of 495-A4 and one layer of 950-A2 electron resist polymer Polymethylmethacrylate 

(PMMA) were spin-coated followed by 180˚ C baking on the hotplate for 5 mins after coating of 

each layer. Scanning electron microscope (Hitachi S-2400) with EBL attachment was used to write 

electrodes pattern. After e-beam lithography, the substrate was soaked in the mixture of MIBK 

and MEK for 70 seconds to develop the e-beam written electrodes. For the deposition of metal on 

electrodes, BJD-1800 e-beam metal evaporator was used. The substrate with electrode pattern after 

e-beam lithography was fixed on the hood of the metal evaporator. 5nm titanium (Ti) and 50 nm 

gold (Au) were deposited at ultrahigh vacuum (about 10-7 Torr) with deposition rate 1 Ǻ/s. 

To measure the electrical properties, the devices were kept in cryogenic probe station 

(Lakeshore Cryogenic probe station) under ultrahigh vacuum (~10-6 to 10-7 torr). The electrical 

transport properties of the devices were measured by Keithley 4200 semiconductor parameter an-

alyzer at room temperature (297 K). 
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Figure 3. 4. Optical micrograph of homojunction p-n junction diode.  

Figure 3.4 shows the optical micrograph of the homostructure p-n junction diode. The 

homo-junction structures were prepared by transferring the Nb-doped MoS2 over undoped MoS2. 

The overlap region of Nb-doped MoS2 and undoped MoS2 constitute the p-n junction. A pair of 

electrodes were fabricated on both doped and undoped samples to measure the electrical properties 

of respective samples separately. For the junction, drain bias was always applied to the doped 

MoS2, while the undoped MoS2 was connected to the source terminal. 

The I-V measurement of the doped Nb-MoS2 contact is shown in figure 3.5. The measure-

ment was done by sweeping the drain voltage from 0 V to -0.1 V at back gate voltages from 0 V 

to -60 V at the step of 20V. The output characteristics of the Nb-doped MoS2 show negligible gate 

dependence, indicating that the Nb-doped MoS2 is degenerately doped. 
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Figure 3. 5. I-V characteristic of Nb-doped MoS2 contact on homojunction p-n diode.  

The characterization of the undoped MoS2 is shown in figure 3.6. Figure 3.6a shows the 

transfer curve of the undoped sample. The drain current was measured at the bias voltage of 100 

mV by sweeping the back-gate voltage from 0 V to 60 V. It clearly shows the n-type behaviour of 

the undoped MoS2. 

 

Figure 3. 6. a) Transfer characteristics and b) I-V characteristics of the undoped MoS2 sample. 

a b 
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The channel seems to be turned on around 10 V. As the back-gate voltage is increased, 

current increased correspondingly. For large back gate voltage, more electrons would be energet-

ically favourable to cross the Schottky barrier across the metal-semiconductor interface, increases 

the drain current. The transfer curve at higher back gate voltage is linear. Which is supported by 

the I-V curve on figure 3.6b. We measured the drain current by sweeping the drain voltage from -

1 V to 1 V at different gate voltages from 20 V to 60 V. As we increased the back-gate voltage 

beyond threshold voltage, the curve is linear indicating that the metal contacts are forming an 

ohmic contact with the Mos2 at higher back gate voltage. The current is not limited in undoped 

MoS2 by the Schottky barrier at higher back gate voltage.  

Now, we measured the electrical properties of the p-n junction using one electrode on the 

Nb-doped MoS2 and another electrode on undoped MoS2. Drain bias was applied to the Nb-doped 

MoS2 and undoped MoS2 was connected to the source terminal. As shown in figure 3.7a, the p-n 

junction clearly shows the rectification behaviour. The ratio of the current at 1V to the current at -

1V (forward current to the reverse current) for the back-gate voltage of 20 V is ~ 50. The current 

is increasing with the increase in back gate voltage due to the electrostatic modulation of the carrier 

density. At the back-gate voltage of 60 V, the current at 1V forward bias is less than 15 µA. As we 

mentioned before, doped MoS2 is independent of the gate voltage and degenerately doped and 

undoped MoS2 is also forming an ohmic contact for high back gate voltage. Comparing the current 

for the same bias at a same back-gate voltage for the doped MoS2, undoped MoS2 and the p-n 

junction, it seems that the current is limited by the rectification behaviour of the junction. I-V 

characteristic of the homostructure p-n junction diode is plotted in semi-log scale in figure 3.7b. 
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Figure 3. 7. a) I-V characteristics of homojunction p-n junction diode consisting of Nb-doped 

MoS2 as p-type and undoped MoS2 as an n-type semiconductor, b) I-V characteristics of the diode 

in semi-log scale. 

During forward bias, the current increases exponentially with the drain voltage given by 

the equation,  

𝐼𝐷(𝑓𝑜𝑟𝑤𝑎𝑟𝑑) =  𝐼𝑠(𝑒𝑛𝑉𝑇

𝑉𝐷 − 1) 

Where ID is the diode current, Is is the reverse bias saturation current, VD is the voltage 

across the diode, n is the ideality factor and VT is the thermal voltage142. As Vds increases, that 

shifts the band of doped MoS2 down to lower the interface barrier height. Hence, the electrons in 

the conduction band of undoped MoS2 and holes in the valence band of p-doped MoS2 can over-

come the interface barrier. For higher Vds, the barrier height further decreases and the number of 

carriers crossing the barrier increases giving rise to a large current. This is a thermionic emission 

process. Figure 3.8c and 3.8d shows the band diagram of p-n junction diode in forward biasing 

condition.  

a b 
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Figure 3. 8. Band diagram of Nb-Mos2/Mos2 homojunction p-n diode. a) when two semiconduc-

tors are not in contact b) in an equilibrium condition, Fermi levels are lined up. c) forward bias at 

low gate voltage. Due to the forward bias, the interface barrier height is decreased increasing the 

current. d) forward bias at large voltage. Due to large gate voltage electrostatic doping of the sem-

iconductor increases the carrier concentration in both sides increasing the current. e) reverse bias 

at low gate voltage. The interface barrier height is increased due to the depletion of the carrier and 

the conduction is solely due to the minority charge carriers. f) reverse bias at large gate voltage. 

The large gate voltage dopes the channel electrostatically bringing the conduction band of n-side 

at the energy level below the valence band of p-side giving rise to band to band tunneling current.  

At forward bias and low gate voltage (figure 3.8c), the barrier height decreases due to the 

applied bias giving rise to the forward current. Forward current is dominated by recombination 
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current. As gate voltage is increased (figure 3.8d), electrostatic doping of the channel increases 

and more carriers are able to recombine. As a result, current increases as shown in figure 3.7. 

The reverse current is dominated by the minority charge carriers at low gate voltages (low 

electron concentrations in MoS2). At small Vgs, the Fermi level of the heavily p-doped MoS2 lies 

in the band gap of the undoped MoS2, in which case the tunneling of the electron from the valence 

band of the heavily p-doped MoS2 to the conduction band of the lightly n-doped MoS2 is prohibited 

and the conduction is only due to the drift of minority carriers (figure 3.8e). For larger Vgs, the 

electron concentration on the n-side increases due to the electrostatic doping while the hole con-

centration on the p-side remains nearly unchanged, leading to a finite overlap of the valence band 

of the Nb-MoS2 and the conduction band of the MoS2. Now the electrons in the valence band of 

Nb-MoS2 can tunnel to the conduction band of the MoS2 giving rise to the band to band tunnelling 

(BTBT) current (figure 3.8f). Reverse current is dominated by the BTBT current. 

The relation of forward and reverse current with the back-gate voltage is further evaluated 

by plotting forward and reverse current against the back-gate voltage. The current at large forward 

bias varies linearly (figure 3.9a) with the back-gate voltage, suggesting that it is limited by the 

series resistance of MoS2 between the p-n junction and the metal contact to MoS2. On the other 

hand, the reverse current increases exponentially with the gate voltage. The tunnelling probability 

of an electron is proportional to the exponential of the inverse of tunnelling barrier width given by 

the expression,  
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Where W is the tunnelling barrier width, m* is the effective mass of the electron, qVD -E 

represents the tunnelling barrier height for an electron of energy E, ħ is the reduced Planck’s con-

stant129. This result indicates that the barrier width decreases linearly with the increase of back-

gate voltage giving exponential rise in current. 

 

Figure 3. 9. Forward (a) and reverse (b) current of homojunction p-n diode as a function of back-

gate voltage. Forward current showed a linear relationship with back-gate voltage, while reverse 

current increased exponentially with back-gate voltage.  

The measurement on the heterostructure p-n junction diodes closely agrees with the result 

for homojunction diodes. Figure 3.10 shows the I-V characteristics measurement of the device. 

 

Figure 3. 10. a) I-V characteristics of doped WSe2 sample b) I-V characteristics of undoped MoS2 

sample c) I-V characteristics of heterostructure p-n junction diode. 

a b 

a c b 
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Figure 3.10a represents the I-V characteristics of the doped WSe2 sample. As shown from 

the plot, Nb-doped Wse2 is degenerately doped p-type semiconductor. The I-V measurement was 

done at different gate voltages from -60 V to 60 V and found no dependence on gate voltage. 

Figure 3.10b is the I-V plot for the undoped MoS2 sample. The channel seems to be turned on 

around 20 V indicating the n-type behavior of the sample. At large back-gate voltages I-V curve 

are linear indicating ohmic contact with the metal electrodes. Figure 3.10c displays the I-V plot of 

the heterostructure p-n junction diode. The diode shows the gate dependent rectification behavior. 

This is due to the modulation of carrier density by the electrostatic gating. On comparing the I-V 

characteristics of doped WSe2, undoped MoS2 and the diode it is clear that the effect of the lateral 

part in limiting current is nominal for the back-gate voltage greater than 20 V. The current is lim-

ited by the vertical junction. The I-V characteristics of the p-n junction diode is plotted on semi-

log scale in figure 3.11a. 

 

Figure 3. 11. a) I-V characteristics of heterostructure p-n junction diode in semi-log scale, b) for-

ward diode current as a function of back gate voltage c) reverse diode current as a function of back 

gate voltage. 

As in the case of homo-structure p-n junction diode, the forward current of the diode is 

linearly dependent on the gate voltage (figure 3.11b) and the reverse current is exponentially de-

pendent (figure 3.11c), indicating recombination dominated forward current and the tunneling 

b 
a 

c 
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dominated reverse current. The difference in the magnitude of the current in heterostructure can 

be attributed to the differences in band alignments between the WSe2 and MoS2 samples. 

3.3 Summary 

In summary, we fabricated two-dimensional p-n junction diodes using van der Waal as-

sembly method. We fabricated and characterized both the homo-structure as well as the hetero-

structure diodes. The diodes displayed the gate tuned rectification behavior. Forward current is 

found to be dominated by thermal emission and is linearly dependent on gate voltage. Whereas, 

the reverse current is dominated by the band to band tunneling current and exponentially increases 

with the back-gate voltage. 
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CHAPTER 4: THERMALLY OXIDIZED 2D TAS2 AS HIGH-Κ DIELEC-

TRIC FOR MOS2 FETS 

4.1 Background and Motivation 

Layered transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, and WSe2 have 

recently emerged as promising post-silicon electronic materials because they have not only demon-

strated a multitude of graphene-like properties desirable for flexible electronics including a rela-

tively high carrier mobility, mechanical flexibility, and chemical and thermal stability, but also 

offer the significant advantage of a substantial band gap essential for low-power digital electron-

ics.1-6 In addition, pristine surfaces of TMDCs are free of dangling bonds, which reduces surface 

roughness scattering and interface traps. Recent experimental and theoretical studies have shown 

that the mobility of monolayer and multilayer TMDCs such as MoS2 and MoSe2 is strongly af-

fected by their dielectric environment and the quality of the interface between the channel and 

dielectric/substrate.7-11 Ultraclean hexagonal boron nitride (h-BN) is an ideal substrate/dielectric 

material in preserving the intrinsic mobility of MoS2 because it has atomically flat surfaces absent 

of dangling bonds, and is nearly free of charged impurities and charge traps.12, 13 However, h-BN 

has a relatively low dielectric constant of 3-4, while high-κ dielectrics are needed to optimize the 

electrostatic control of the channel and minimize operation voltage.14-16 

In silicon-based electronics, atomic layer deposition (ALD) has been widely used to inte-

grate high-κ gate dielectrics such as Al2O3 and HfO2 with atomically controlled thickness and 

uniformity. However, the lack of out-of-plane covalent bonds or functional groups on pristine 

TMD surfaces imposes a significant challenge for high-κ dielectric integration in top-gated TMDC 

devices because ALD requires chemical groups such as hydroxyl groups on the channel surfaces 

to form conformal and uniform interface layers.17-20 To overcome this challenge, Liu et al. have 

significantly lowered the ALD temperature to grow Al2O3 films on MoS2.
21 However, the coverage 
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and uniformity of Al2O3 thin films grown by low-temperature ALD are intricately affected by 

multiple growth parameters such as pulsing and purging times, process pressure, and cleanliness 

of the MoS2 surface, leading to poor reproducibility.22 For instance, a small amount of organic and 

solvent residues on the TMDC surfaces have been found to drastically influence the ALD nuclear 

behaviour during the initial stage of deposition.23 In addition, ALD dielectric films grown at low 

temperatures tend to contain a substantial amount of impurities such as OH and C residues.24, 25 A 

variety of surface functionalization methods such as oxygen plasma and ozone have been used to 

improve the smoothness and uniformity of ALD grown high-κ dielectrics on TMDCs.22, 26, 27 How-

ever, highly reactive oxygen plasma and ozone tend to degrade the electrical properties of mono-

layer and few-layer TMDCs through surface oxidation and the introduction of defect states. To 

date, it remains a major challenge to grow highly uniform, atomically smooth and ultrathin high-

κ dielectrics on TMDC surfaces while preserving the intrinsic channel properties of pristine TMDC 

channels. 

In this chapter, we present a new strategy to integrate high-κ dielectric into MoS2 field-

effect transistors through the mechanical assembly of Ta2O5 chemically transformed from 2D 

TaS2. In contrast to relatively inert semiconducting TMDs such as MoS2, MoSe2 and WSe2, me-

tallic TMDCs such as TaS2 are prone to surface oxidation in ambient environment.28-30 At elevated 

temperatures, monolayer and multilayer TaS2 can be chemically transformed into atomically flat, 

spatially uniform and nearly defect-free Ta2O5 insulator via thermal oxidation, as recently demon-

strated by the authors.31 In this work, we have systematically characterized the dielectric properties 

of Ta2O5 thermally oxidized from TaS2 by capacitance-voltage measurement, yielding a thickness 

independent high dielectric constant of κ ~ 15.5. MoS2 FETs fabricated using thermally oxidized 

thin Ta2O5 as gate dielectric show nearly hysteresis-free transfer characteristics, suggesting high 
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interface quality. Furthermore, this new approach enables us to assemble high-quality Ta2O5 die-

lectric on top of pristine MoS2 channels to form top-gated FETs, while circumventing the con-

straints of ALD methods. MoS2 FETs with the thermal Ta2O5 top-gate dielectric demonstrate a 

current on/off ratio of ~ 106, a high field-effect mobility > 60 cm2V-1s-1, and a near ideal subthresh-

old swing (SS) of ~ 61 mV/dec at room temperature, along with pronounced drain-current satura-

tion in their output characteristics. The impressive performance of the MoS2 FETs can be attributed 

to the atomically flat, spatially uniform, and nearly charge-trap free high-κ Ta2O5 dielectric syn-

thesized by thermal oxidation of TaS2, which forms an ultraclean interface with the MoS2 channel.  

4.2 Results and discussion  

To chemically transform TaS2 2D metal into Ta2O5 high-κ dielectric, TaS2 flakes were first 

mechanically exfoliated on SiO2/Si substrate and subsequently oxidized by heating on a hot plate 

at 300°C for 3 hours in air. The chemical transformation of TaS2 into Ta2O5 was confirmed by X-

ray photoelectron spectroscopy (XPS). X-ray photoelectron spectroscopy (XPS) measurement was 

performed using a Kratos Axis Ultra XPS system with a monochromatic Al source. Because TaS2 

is sensitive to air, the samples were mechanically exfoliated from bulk crystals right before XPS 

measurement and then immediately inserted into the XPS chamber to avoid oxidation unless spec-

ified otherwise in the manuscript. Pass energy of 20 eV with 0.1 eV scanning step was used for 

photoelectron detection. The C 1s reference line at the binding energy of 284.6 eV was used to 

calibrate the charging effect. 
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Figure 4. 1. XPS of exfoliated TaS2 flakes measured within 2 min of ambient exposure, after 1 

day of ambient exposure, and after 3hr of hotplate heating at 300°C in air. 

Figure 4.1 shows Ta 4f core level XPS spectra of multilayer TaS2 flakes that are (i) freshly 

exfoliated (inserted into the XPS chamber within 1-2 minutes of exfoliation), (ii) exposed in am-

bient environment for one day, and (iii) heated at 300oC in ambient air for 3 hrs. The freshly exfo-

liated TaS2 flakes exhibit two well-defined peaks at binding energies of 22.8 eV and 24.7 eV, 

corresponding to the Ta4+ 4f7/2 and Ta4+ 4f5/2 doublet of TaS2. After exposed to ambient air for a 

day, the TaS2 flakes exhibit two additional weak peaks at slightly higher binding energies, sug-

gesting partial oxidation of TaS2 surfaces. After the TaS2 flakes were heated to 300oC for 3 hours 

in air, the Ta4+doublelet of TaS2 completely disappears, while the weak peaks develop into two 

distinct peaks at binding energies of 25.7 eV and 27.6 eV, corresponding to the Ta5+ 4f7/2 and Ta5+ 

4f5/2 doublet of Ta2O5.
32-35  
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Figure 4. 2.  (a) Thicknesses of mechanically exfoliated TaS2 before and after 3hr of heating at 

300°C in air as determined by AFM. The insets show optical micrographs of a typical TaS2 flake 

on SiO2 before (bottom right) and after heating at 300°C in air (top left). (b) AFM surface topog-

raphy of a Ta2O5 flake converted from a corresponding TaS2. 

The chemical transformation of TaS2 into Ta2O5 is also clearly manifested in the form of 

color change. The lower-right and upper-left insets of figure 3a present the optical micrographs of 

a ~ 12 nm multilayer TaS2 sample before and after thermal oxidation (which chemically transforms 

TaS2 to Ta2O5). While the sample geometry and lateral dimensions remain nearly unchanged 

throughout the chemical transformation, the sample thickness measured by AFM systematically 

decreases by ~4% upon thermal oxidation independent of initial sample thickness as shown in 

Figure 4.2a, indicating that thermal oxidation occurs throughout the entire sample. Because about 

25% volume decrease would be expected if the TaS2 was transformed into crystalline Ta2O5, the 

4% thickness reduction (with nearly unchanged lateral dimensions) observed here suggests that 

the Ta2O5 has significantly lower density than crystalline Ta2O5 and is likely amorphous.36, 37 The 

non-crystalline structure of our Ta2O5 with relatively low density allows the oxygen in air to dif-

fuse deep into the sample and achieve uniform and thorough thermal oxidation. In spite of the 

chemical and structural transformation, the Ta2O5 flakes display very low root-mean-square 

(RMS) surface roughness. Figure 4.2b shows a representative AFM topographic image acquired 
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on a ~ 12 nm thick Ta2O5 synthesized by thermal oxidation yielding an RMS roughness of 0.17 

nm, which is comparable to that of TMDCs.38 Such a low RMS roughness in the thermal Ta2O5 is 

essential for the formation of high quality interface with MoS2 and other TMDC channel materials.  

To extract the dielectric constant of the Ta2O5 synthesized by thermal oxidation, we fabri-

cated capacitors consisting of an ultrathin Ta2O5 dielectric layer sandwiched between the top and 

bottom metal electrodes as schematically illustrated in Figure 4.3a. First, bottom electrodes con-

sisting of 10 nm of platinum (Pt) with 5 nm of titanium (Ti) adhesion layer were patterned on Si 

substrates with 290 nm of thermal oxide using electron beam lithography followed by electron 

beam deposition and lift-off. Next, TaS2 flakes were produced by mechanical exfoliation of com-

mercial available TaS2 crystals on Poly-dimethylsiloxane (PDMS) stamps and subsequently trans-

ferred on top of the Pt electrodes using a dry transfer method.39 The TaS2 flakes were then ther-

mally oxidized to Ta2O5 by heating on a hotplate at 300°C for 3 hours in ambient air.  Finally, top 

electrodes were fabricated by e-beam lithography and electron beam deposition of 10 nm Ti and 

30 nm Au. The area of each metal-insulator-metal capacitor is defined by the area of the Ta2O5 

dielectric in the overlap region between each top electrode and the bottom electrode. The C-V 

measurements were carried out at room temperature using an Agilent 4284A Precision LCR Meter 

inside a Lakeshore TTPX probe station.   
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Figure 4. 3. (a) Schematic illustration of capacitors consisting of a thin Ta2O5 dielectric sand-

wiched between Pt and Ti/Au metal electrodes (b) Capacitance vs. voltage for a capacitor com-

prising a 13 nm thick Ta2O5 dielectric as the voltage is swept along both negative and positive 

directions. (c) Capacitance as a function of the area for three capacitors with the same Ta2O5 die-

lectric thickness (13 nm) measured at two different frequencies (500 Hz and 1 kHz). Inset: an 

optical image of the corresponding capacitors. (d) A/C vs. thickness of Ta2O5. The inverse of the 

slope of the plot gives the dielectric constant of Ta2O5 based on the parallel plate capacitor model: 
𝐶

 𝐴
=

𝜀0𝜅

𝑡
 

Figure 4.3b shows the capacitance as a function of the applied DC bias voltage (C-V) of a 

capacitor with a 13 nm thick Ta2O5 dielectric measured by applying a 500 Hz and 50 mV AC 
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excitation voltage. The nearly voltage independent capacitance shows negligible hysteresis, indi-

cating that the Ta2O5 dielectric is of high quality because charge traps in the dielectric and at the 

interfaces usually introduce non-negligible hysteresis. To exclude the background capacitance 

(e.g. the cable capacitance), we plot the total capacitance as a function of the area for capacitors 

fabricated using the same piece of Ta2O5 with uniform thickness, as shown in figure 4.3c. From a 

linear fit to the capacitance vs. area data, capacitance per unit area (C/A) of the capacitors with 

different Ta2O5 dielectric thicknesses is determined. The near zero intercept of the linear fit in 

figure 4c indicates negligible background capacitance. The dielectric constant can be calculated 

using the parallel capacitor model: 
𝐶

 𝐴
=

𝜀0𝜅

𝑡
 , where ε0 is the permittivity of the free space, and κ 

and t are the dielectric constant and thickness of the Ta2O5, respectively. Figure 4.3d shows that 

the inverse of capacitance per unit area (A/C) is linearly proportional to the thickness (t) for various 

Ta2O5 thicknesses ranging from 5 to 33 nm, indicating that the dielectric constant of the Ta2O5 is 

thickness independent. This finding provides further evidence that multilayer TaS2 samples have 

been uniformly transformed into Ta2O5. From the slope of the linear fit, we extract a dielectric 

constant of ~ 15.5, which is consistent with the κ reported for amorphous Ta2O5.
40 It is worth 

noting that the dielectric constant of our thermal Ta2O5 is about 4 times larger than that of SiO2 

(3.9) and h-BN (3 - 4).  

To further evaluate the quality of the thermally oxidized Ta2O5 as a high-κ dielectric for 

2D electronics, we first fabricated MoS2 FETs with an ultrathin Ta2O5 dielectric and a multilayer 

graphene (M-Gr) gate as schematically shown in Figure 4.4a. Here we choose multiplayer gra-

phene as the gate because it not only has atomically smooth surfaces but also is compatible with 

the fabrication of 2D flexible electronics in the future. To fabricate MoS2 FETs with Ta2O5 gate 

dielectric and graphite bottom gate, thin graphite flakes were first mechanically exfoliated and 
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transferred onto Si/SiO2 substrates as bottom gates. Subsequently, multilayer TaS2 flakes were 

produced by mechanical exfoliation from commercially available TaS2 crystals on PDMS stamps 

and subsequently transferred onto top of the graphite gates using a home-built precision transfer 

stage. The substrates were then heated at 300°C for 3 hrs in ambient environment to chemically 

transform TaS2 to Ta2O5. The oxidized flakes were further characterized by optical microscope 

and XE-70 non-contact mode atomic force microscopy (AFM). Next, few-layer MoS2 flakes were 

exfoliated on PDMS stamp and transferred onto the Ta2O5/graphite gate stack. Finally, 

drain/source electrodes and electrical contacts to the graphite gate were fabricated by e-beam li-

thography and electron beam deposition of 5 nm of Ti and 40 nm of Au followed by acetone lift-

off. Figure 4.4b presents a micrograph of a representative MoS2 FET consisting of a 7.0 nm thick 

MoS2 channel, a 6.5 nm thick Ta2O5 dielectric and a multilayer graphene back gate. Figure 5c 

shows the output characteristics of the MoS2 device depicted in Figure 4.4b. In the low Vds region, 

the I-V characteristics are linear, indicating near ohmic contacts. At high drain/source voltages, the 

device exhibits apparent current saturation partially due to the channel pinch-off, suggesting ef-

fective gate coupling. Figure 4.4d presents room-temperature transfer characteristics of the device 

measured at Vds = 100 mV. The MoS2 device exhibits n-type behavior with a current on/off ratio 

exceeding 105, where the off current is limited by the leak current as shown in Figure 4.4d. 
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Figure 4. 4. (a) Schematic illustration of a MoS2 FET device with Ta2O5 dielectric and multilayer-

graphene (M-Gr) bottom gate. (b) Optical image of a typical bottom-gated MoS2 FET device with 

Ta2O5 dielectric. (c) Output characteristics of the MoS2 device shown in (b). (d) Transfer charac-

teristics of the same MoS2 FET device along with the gate leakage current. Red color represents 

the positive sweep direction and the blue color represents the negative sweep direction of the gate 

voltage. 

In spite of the ultrathin layer thickness (6.5 nm) and relatively small band bap of Ta2O5 

(3.8-5.3 eV) as a dielectric, the gate leak current is rather low, suggesting that the thermally oxi-

dized Ta2O5 is highly uniform with very low density of pinholes. We expect that the gate-leak 

current can be significantly reduced by using high-κ dielectrics with a larger bandgap such as 
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HfO2. Similar to metallic TaS2, HfSe2 is also prone to oxidation in air (similar to TaS2) in spite of 

the fact that it is a semiconductor with a bulk band-gap comparable to that of balk MoS2.
41, 42 We 

envision that 2D HfSe2 can be relatively straightforwardly transformed to ultrathin HfO2 high-κ 

dielectric and integrated into FETs with semiconducting TMDC channel materials such as MoS2 

by mechanical assembly. The on-current can be increased through contact engineering to further 

improve the on/off ratio and overall device performance.43 The transfer characteristics measured 

with opposite gate sweep directions show negligible hysteresis, indicating low charge trap density 

at the channel/dielectric interface. The subthreshold swing of the device (~ 64 mV/dec) approaches 

the theoretical limit of  
𝑘𝑇

e
ln(10) = 60 𝑚𝑉/𝑑𝑒𝑐 at T = 300 K, which can be attributed to the large 

gate capacitance of the ultrathin Ta2O5 high-κ dielectric and high interface quality. A relatively 

low interface trap density of Dii = 1.2×1012 cm-2eV-1 is calculated from the following equations:   

𝑆𝑆 = (1 +
𝐶𝑖𝑡

𝐶𝑜𝑥
) × 𝑘𝑇 × 𝑙𝑛(10)/𝑒       (1) 

𝐷𝑖𝑖 = 𝐶𝑖𝑡/𝑒       (2) 

Here Cit and Cox are the interfacial and oxide capacitances, respectively. 

For practical application of MoS2 as a channel material in integrated circuits, top-gated 

MoS2 FETs with high-κ gate dielectric are needed to individually control each device. A signifi-

cant advantage of this approach to integrating high-κ dielectrics in 2D electronics is that it circum-

vents a major challenge encountered in the ALD growth of high-κ dielectrics on TMDs due to the 

lack of dangling bonds on semiconducting TMDC surfaces. To fabricate the devices, mechanically 

exfoliated multilayer TaS2 flakes were dry-transferred on top of mechanically exfoliated M-Gr 

flakes serving as gate electrodes, and subsequently thermally oxidized to Ta2O5. Next, a selected 

few-layer MoS2 channel was placed on top of the Ta2O5/M-Gr stack also by dry-transfer.43 Finally, 
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drain, source and gate contacts were fabricated by electron beam lithography and subsequent dep-

osition of 5 nm Ti and 40 nm Au. Figure 4.5a schematically shows a few-layer MoS2 FET with 

Ta2O5 as top-gate dielectric. To fabricate the devices, ultrathin flakes of Ta2O5 were produced by 

thermal oxidation of mechanically exfoliated TaS2 multilayers on Si substrate at 300oC in air, and 

subsequently transferred onto mechanically exfoliated few-layer MoS2 on degenerately doped Si 

substrate with 290 nm thermal oxide. Both the drain/source and top-gate electrodes were then 

fabricated by EBL and e-beam deposition of 5 nm Ti and 40 nm Au. Figure 4.5b shows an optical 

micrograph of a representative top-gated MoS2 FET, which consists of a 6.5 nm thick MoS2 chan-

nel and 31 nm thick Ta2O5 gate dielectric. As shown in Figure 4.5c, the output characteristics of 

the device show linear behavior at low Vds and current saturation at high Vds, similar to the MoS2 

devices with Ta2O5 bottom-gate dielectric. Here a constant back-gate voltage of 60 V is applied to 

reduce the contact resistance and turn on the under-lapped regions between the drain/source elec-

trodes and top-gate electrode. Figure 4.5d shows room temperature transfer characteristics of the 

same device measured at Vds = 100 mV by sweeping the top-gate voltage at a fixed back-gate 

voltage of 60 V. The transfer curve exhibits a nearly ideal SS of 61 mV/dec in spite of the relatively 

thick (31 nm) Ta2O5 gate dielectric, indicating nearly trap-free channel/dielectric interface. The 

current on/off ratio approaches 106, which can be further enhanced by increasing the on-current 

through the reduction of series resistance. It is worth noting that the drain current starts to saturate 

at Vtg ~ 0 V, which is mainly caused by the reduction of the effective gate voltage (Vtg_eff) due to 

the presence of a significant series resistance from the drain/source contacts and the under-lapped 

regions given by Vtg_eff =Vtg – RsIds, where Vtg is the applied top-gate voltage, and Rs is the sum of 

metal/MoS2 contact resistance and the resistance of the under-lapped regions.44 The presence of a 

substantial Rs may also partially contribute to the current saturation in the output characteristics 
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because the effective drain-source bias voltage given by Vds_eff =Vds – 2RsIds is also reduced at high 

Ids. 

 

Figure 4. 5. (a) Cross-sectional view of a MoS2 FET device with Ta2O5 dielectric and metal top 

gate. (b) Optical image of a MoS2 FET device with Ta2O5 top-gate dielectric. (c) Output charac-

teristics of the MoS2 device in (b).  (d) Transfer characteristics of the same MoS2 FET device 

plotted both in semi-log and linear scales. 

As shown in Figure 4.5d, a field-effect mobility of µ𝐹𝐸 ≈ 61.5 cm2V-1s-1 is extracted from 

the linear region of the transfer curve using the expression µ𝐹𝐸 =
𝐿

𝑊
×

𝑑𝐼𝑑𝑠

𝑑𝑉𝑡𝑔
×

1

𝐶𝑡𝑔
×

1

𝑉𝑑𝑠
. Here L is 

the channel length directly underneath the metal gate because the under-lapped regions are not 

tunable by the top-gate. Inclusion of the under-lapped areas in the calculations would overestimate 



61 

 

 

the field-effect mobility. The field-effect mobility observed in our top-gated MoS2 FETs is com-

parable to the highest room-temperature mobility values for top-gated MoS2 devices with high-κ 

dielectric, further indicating low density of trap states in the thermally oxidized Ta2O5 dielectric 

and at the channel/dielectric interface.  

4.3 Summary 

In summary, we have demonstrated integration of ultrathin Ta2O5 chemically transformed 

from 2D TaS2 in both bottom-gated and top-gated MoS2 FETs as a high-κ gate dielectric. These 

devices show desirable FET characteristics such as a high on/off ratio, absence of hysteresis, a 

nearly ideal subthreshold swing, and a relatively high mobility, indicating high dielectric and in-

terface quality. The newly developed dielectric integration strategy via chemical transformation of 

2D materials to high-κ dielectrics in conjunction with polymer-based dry transfer techniques over-

comes a significant challenge of dielectric integration in semiconducting TMDC devices, and is 

applicable to a wide range of 2D materials. This approach is also scalable when combined with 

large area synthesis techniques such as chemical vapor deposition (CVD) and liquid exfoliation.45, 

46 



62 

 

 

CHAPTER 5: SYNTHESIS AND CHARACTERIZATION OF ULTRATHIN 

HFO2 FROM CHEMICAL TRANSFORMATION OF 2D HFSE2 

5.1 Background and Motivation 

Scaling of silicon dioxide dielectrics brought revolution in electronics industry by making 

it possible to increase the number of transistors per chip alongside performance enhancement, low 

power consumption and reduced cost88. However, in this process, the effective oxide thickness of 

SiO2 reached almost to the limit of the Physical thickness. As the thickness of SiO2 gate insulators 

is reduced to few atomic layers, charge carriers can flow through the gate dielectric by a quantum 

tunnelling mechanism90,91. This mechanism involves the tunnelling of charge carriers through a 

trapezoidal energy barrier92. It is seen that the tunnelling probability increases exponentially as the 

thickness of SiO2 layer decreases90,92. In addition to gate leakage current, the reduction in width of 

gate oxide also causes a reduction in the ON/OFF ratios89. To continue the downscaling of 

MOSFET, without facing the issues of leakage currents, study of dielectrics having high-κ value 

is in prime focus. Recently, a lot of efforts have been focused to investigate high-κ gate dielectrics 

such as, zirconium dioxide (ZrO2)
107, hafnium dioxide (HfO2

108,109), aluminium oxide (Al2O3
110), 

titanium dioxide (TiO2
111), tantalum pentoxide (Ta2O5

112,113) etc. These high-κ dielectrics should 

possess thermal stability, high recrystallization temperature, smooth interface, suitable band gap 

etc. HfO2 is a most promising candidate among these high-κ dielectrics with band gap of 6V, 

theoretical K value around 25 and crystallization temperatures beyond 450°C143. Having large 

band gap, HfO2 is expected to decrease the leakage current in compare to the Ta2O5
144. Also, HfO2 

is thermally stable on direct contact with Si in compare to other high-κ  dielectrics such as Ta2O5, 

TiO2
145.  

For the enhancement of the device, TMDC as channel, the growth of conformal, uniform 

high-κ dielectric is necessary. The high-κ dielectric integration study so far has been based on 
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different growth methods (CVD, ALD, PLD, MBE, etc.). With these complex growth methods, 

the interface has always been issue. ALD is supposed to be more reliable deposition in case of 

TMDCs. McDonnell et. al., (2013) did the Atomic layer deposition (ALD) of HfO2 on the MoS2 

surface146, and found that the ALD on MoS2 was not uniform. They could not detect covalent 

bonding between the HfO2 and MoS2. In another study, when 15-17 nm HfO2 was deposited by 

ALD, island type growth was observed resulting in non-uniform films120. In their study, Lembke 

et al., (2015) found that, due to the absence of out of plane covalent functional group in MoS2, 

surface functionalization is needed to fabricate scaled 2 dimensional layered devices using ALD8.  

The uniform ALD growth of ~ 10 nm Al2O3 has been reported147, but in contrast, non-uniform 

ALD of Al2O3 at same temperature and precursors has also been reported148. Thus, it seems like 

ALD depends upon different factors and cannot rely upon same method in different conditions. 

And the problem of high-κ dielectric integration of TMDC is still on.  

To get rid of the problems of ALD growth of dielectrics, we proposed two-dimensional flat 

high-κ dielectric by phase engineering. We prepared two dimensional atomically flat high-κ die-

lectric through mechanical exfoliation followed by thermal oxidation. In this study, we obtained 

planar Hafnium di-selenide (HfSe2) using mechanical cleavage method, and oxidized it in air to 

obtain Hafnium Oxide (HfO2). As we obtained HfSe2 from the exfoliation of single crystal, our 

sample has relatively good interface. We also verified the surface topography of oxidized dielectric 

by AFM characterization. We found the oxidized surface topography remains preserved as before 

oxidation. 

5.2 Results and Discussion 

All samples in this study were mechanically exfoliated using scotch tape technique. Ini-

tially, HfSe2 samples were exfoliated directly on Si/SiO2 substrate to observe the color contrast. 
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Later, for the device fabrication purpose, Graphite were first transferred on Si/SiO2 substrate and 

HFSe2 samples were transferred over Graphite. The schematic diagram of the fabrication process 

is shown in figure 5.1.  

 

Figure 5. 1. Process for the device fabrication. a) few layer graphite transfer on Si/SiO2 substrate, 

b) PDMS assisted HfSe2 transfer on the top of Graphite c) heating substrate on a hotplate in ambi-

ent condition d) after electrode fabrication. 

Oxidation of exfoliated samples was done in several stages to find the right combination 

of temperature and time of heating. HfSe2 is highly reactive in air. HfSe2 surface showed protru-

sions up to 60 nm on exposing in air for 1 day149. In presence of air, the progressive oxidation of 

Hf happens due to the higher electronegativity of Oxygen in compare to the Selenium. The study 

showed that the Se-Hf ratio dropped from 2:1 to 1.4:1 in just 48 hours period.  

The exfoliated samples were left in ambient condition for 24 hours. A slight change in 

color contrast was observed after 24 hours in air as shown in figure 2b. The change in color contrast 

clearly indicates phase transformation of HfSe2 due to the replacement of Selenium atoms by oxide 

atoms150. Then the samples were heated at different temperatures and observed further change in 

color contrast. Figure 5.2 shows the optical images of the HfSe2 samples heated at different tem-

peratures. 

Hot Plate 

Graphite Graphite 
HfSe2 

HfSe2 Graphite 

Substrate Substrate 

Substrate 
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Figure 5. 2. Optical images of the HfSe2 sample (inside solid area) on the top of Graphite a) im-

mediately after the exfoliation, b) after exposing 24 hours in air, c) heating for 1 hour at 200°C in 

air, d) heating for 1 hour at 300°C and e) for 2 more hours at 300°C. 

After exposing in air for 24 hours the color of the HfSe2 samples changed slightly as shown 

in figure 1b. Then the samples were heated in hot plate subsequently at 200°C for 1 hour, 300°C 

for 1 hour and finally 300°C for 2 more hours to increase the uniformity and speed of oxidation 

process. The color contrast of the samples was changed with the increase in temperature (figures 

1c – 1e). The surface roughness of the samples was decreasing with increase in temperature indi-

cating more uniform oxidation (table 5.1). To further confirm the change, HfSe2 samples at differ-

ent stages of oxidation were characterized using non-contact AFM. 

Immediately after  

exfoliation 

after 24 hour in air 
Heating @ 200 C for 1 hr 

Heating @ 300 C for  

2 more hrs 

Heating @ 300 C for 1 hr 
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Figure 5. 3. AFM images of HfSe2 sample a) after exposing in ambient condition for 24 hours, b) 

after heating 1 hour at 200° C, c) after heating for 1more hour at 300°C and d) after heating 2 more 

hours at 300° C. Images were taken at the same area of the sample.  

Thickness and roughness of the HfSe2 surface were measured from AFM image of the 

samples at different stages of oxidation. Thickness and roughness, both were consistently decreas-

ing with increase in oxidation temperature until it reached 300°C. At 300°C, the samples were 

heated twice, first for one hour and later for two hours. No significant change in thickness and 

roughness were observed for two hours heating. Figure 5.3 shows the AFM images of a sample 

(optical micrograph is shown in figure 2) at different stages of oxidation. The thickness and rough-

ness measurement of two different samples are tabulated in table 1. Sample I was measured 14.34 

nm thick after exposing in air for 24 hours. After heating the sample on the hot plate for 1 hour at 

200°C, the thickness decreased to 12.48 nm. The sample was further heated for 1 hour on the hot 

plate at 300°C, thickness became 7.93 nm. We observed large change in thickness at this stage. 

The sample was further heated at the same temperature, 300°C, for 2 more hours, and the thickness 

was changed slightly to the 7.58nm. The roughness of the sample also decreased similarly. After 

24 hours in air, roughness was 3.62 nm, which decreased to 1.14 nm after heating for 1 hour at 
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200°C and further decreased to 1.09 nm after heating at 300°C for 1 hour. On further heating at 

300°C for 2 more hours, the roughness became 666 pm. Although there was not much change in 

thickness during the last 2 hours heating of the sample at 300°C, the roughness of the sample 

decreased significantly. For the measurements, same areas of the surface were chosen each time. 

A similar pattern of decreasing thickness and roughness is seen in the second sample as well. As 

seen in sample I, the thickness of the sample did not change significantly on heating for 2 hours at 

300°C, but the roughness is decreased significantly. A similar pattern of change in thickness and 

roughness is observed in other samples as well. 

Table 5. 1. Thickness and roughness measurement of HfSe2 surface at different stages of the oxi-

dation process. Same areas of the sample were chosen for each measurement. 

After exposing the HfSe2 sample in air for 24 hours, the sample surface was filled with 

bubbles (white dots on image). This is due to the accumulation of selenium atoms at the surface, 

which were replaced by the oxygen atoms to form an oxide. These bubbles (protrusions) appeared 

to fade out with an increase in temperature as seen from the subsequent AFM images. We com-

pared the AFM image of the surface after exposing in air for 24 hours with the image after heating 

at 300°C for 3 hours to see whether the bubbles are gone completely or not. We choose an area of 

the HfSe2 that is on Si substrate and studied the line profile. Figures 4c and 4d show the line profile 

of the surface along the line shown in figures 5.4a and 5.4b respectively. It is seen that the variation 

    

In air for 24 

hours 

Heating @ 200 

C for 1 hour 

Heating @ 300 

C for 1 hour 

Heating @ 300 C 

for 2 hours 

Sample I 

Thickness  14.34 nm 12.48 nm 7.93 nm 7.58 nm 

Roughness 3.62 nm 1.14 nm 1.09 nm 666 pm 

Sample II 

Thickness  12.84 nm 11.59 nm 6.62 nm 6.69 nm 

Roughness 4.81 nm 2.41 nm 1.31 nm 938 pm 
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is in multiple of tens of nanometer (~ 30 nm) in image 4a (after exposing 24 hours in air), while 

the variation in image 5.4b (after heating at 300°C for 3 hours) is seen less than 1nm indicating 

the removal of selenium accumulation from the surface and uniform oxidation of the sample. 

 

Figure 5. 4. a) AFM image of HfSe2 sample after exposing in air for 24 hours. b) after heating at 

300°C for 3 hours. c & d) line profile of the surface of the sample along the red line of the sample 

a & b. 

During previous tests, the sample was oxidized in different stages (24 hours exposure in 

air, 1hour heating at 200°C, 1hour heating at 300°C and 2 hours heating at 300° C). The thickness 

and roughness of the sample were found to be changed significantly during the heating at 300° C. 

The change during previous stages were nominal. So, we skipped the previous oxidation stages 

and directly oxidized the sample by heating on the hot plate at 300°C for 3 hours. Figure 5.5 shows 

the images of the sample heated immediately after exfoliation and quick AFM characterization. 
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The HfSe2 sample was transferred over the multi-layer Graphite using PDMS assisted dry transfer. 

After transfer, the sample was characterized using AFM and heated on the hotplate at 300°C for 3 

hours in ambient environment. The devices were again imaged after oxidation.  

Optical image shows the change in color without any change in shape of the sample. 

Change in color is quite significant on heating at 300°C for 3 hours (figures 5.5a and 5.5b). Figure 

5c and 5d are the AFM images of figures 5.5a and 5.5b respectively. The topography of the sample 

was same but the thickness was changed from 20.8 nm, before oxidation, to 12.4 nm, after oxida-

tion. The change in thickness was in close agreement with the thickness change during previous 

oxidation. Figure 5.5e and 5.5f are the 2um x 2um image taken from the same area of the device 

5.5a and 5.5b before and after the oxidation. The big bubbles on figure 5.5e (before oxidation) 

completely disappeared in figure 5.5f (after oxidation) and the surface looked smoother indicating 

the removal of the selenide accumulation. The measurement of the roughness of the sample, mean 

square fluctuation, was decreased from 3.6 nm to 471 pm manifesting the uniformity of trans-

formed oxide.  The change in thickness and roughness of the samples were consistent with the 

previously studied several stages oxidation. After careful consideration of the results obtained from 

oxidation at different condition, we were convinced that similar to the cases of Ta2O5 and 

TiO2
151,152, Hfse2 as well oxidize and completely convert to HfO2 upon heating at 300°C in ambient 

condition for 3 hours.  
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Figure 5. 5. Optical image of HfSe2 on the top of multilayer Graphite a) immediately after trans-

formation b) After performing oxidation by heating at 300°C in ambient condition for 3 hours. 

AFM image of the same device c) immediately after transformation d) After performing oxidation. 

2x2 image of the same area of the device e) before and f) after oxidation. 

We carried out the systematic investigation of the thickness of HfO2 sample after oxidation, 

as a function of the thickness of HfSe2 sample before oxidation. Figure 5.6 shows the thickness of 

HfO2 as a function of the thickness of HfSe2. Experimental data has been plotted using the data 

e f 

Before Oxidation After Oxidation 

HfSe2 

HfO2 

HfO2 

Graphite 
Graphite 

Graphite 
Graphite 
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obtained from the AFM image analysis (shown in table 5.2). For theoretical curve, mass density 

formula has been used. The molar mass of HfO2 and HfSe2 are found to be 210.49 gm/mole and 

336.43 gm/mole from the literature. The density of HfO2 and HfSe2 are given as 9.68 gm/cm3 and 

7.50 gm/cm3. Using, Volume = Mass / Density, we found the volume per mole for HfO2 and HfSe2 

as 21.75 cm3 and 44.86 cm3. As the topography of the sample has not been observed changing (as 

seen from AFM images), change in volume is solely due to the change in thickness of the sample. 

Using these two volumes, we found the conversion factor for transformation from HfSe2 to HfO2 

as 0.48. The detail calculation of the conversion factor is given in table 5.3. The theoretical curve 

is plotted with the conversion factor as a slope and passing through (0,0). The experimental data 

points seem to be slightly higher in comparison to the theoretical values, indicating the density of 

HfO2 after oxidation is slightly lower than that of crystalline HfO2, suggesting the amorphous 

nature of the transformed oxide.  
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Thickness before oxidation (nm) Thickness after oxidation (nm) 

7.70 5.50 

7.80 6.70 

12.50 8.44 

12.80 6.69 

14.30 7.58 

19.20 9.04 

20.80 12.40 

23.70 13.80 

Table 5. 2. Thickness of Hafnium samples immediately after exfoliation (HfSe2) and after heating 

in air for 3 hours at 300° C.  

  HfSe2   HfO2 

        

molar mass (g/mol) 336.43   210.49 

density (g/cm3) 7.50   9.68 

        

Volume per mole 44.86   21.75 

        

Conversion ratio   0.48   

Table 5. 3. Calculation of conversion factor on the basis of mass density relation.  
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Figure 5. 6. Thickness profile of conversion of HfSe2 into HfO2. Red dots are the actual data points 

obtained from the experiment. Blue curve has been obtained using 0.4848 as the slope origin as 

the starting point. 

To measure the capacitance of thermally converted HfO2, we fabricated the MIM junction 

diodes. For MIM junction diodes, we used Graphite or Ti/Pt as the bottom electrode. We stacked 

the mechanically exfoliated HfSe2 onto the bottom electrode using PDMS assisted dry transfer 

method. The substrate was then heated at 300°C for 3 hours in air. Then electrodes were fabricated 

and Ti/Au were deposited to make the electric connection as shown in figure 5.7. Figure 5.7a 

shows the schematics of MIM junction diode with HfO2 as a dielectric layer between Ti/Pt or few-

layer Graphite and Ti/Au electrodes. HP 4284A precision LCR meter is used to measure the ca-

pacitance of the dielectric. It has a frequency range from 20 Hz to 1 MHz with different mode of 

measurements. Capacitance is measured by sweeping the bias voltage at different frequencies level 

by applying low AC system voltage (50 mV to 100 mV). The capacitance is measured in Cp:D 
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configuration to minimize the parasitic capacitance effects. To measure the capacitance more pre-

cisely, the recorded measure value was set at least average of 8 consecutive measurements. 

  

Figure 5. 7. a) Schematic diagram of MIM junction, b) cross-sectional view of MIM junction, 

which forms a parallel plate capacitor, c) MIM junction with Ti/Pt as a bottom electrode and HfO2 

as a dielectric (insulator) and Ti/Au as a top electrode, d) Magnified part of image c.  

MIM junction forms a parallel plate capacitor with the bottom and top electrodes work like 

two plates of a capacitor (figure 5.8). The capacitance of the parallel plate capacitor is given as, 

 𝐶 = 𝜅Ɛ0

𝐴

𝑡𝑜𝑥
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Where A is the area of the capacitor plate, tox is the distance between two plates, κ is the 

dielectric constant and Ɛ0 is the permittivity of free space and has the value 8.85×10−12 F/m. In our 

case, A is the area of electrode and tox is the thickness of the dielectric layer. For a given dielectric, 

κ is a constant, tox is constant and Ɛ0 is always constant. That means the capacitance of a given 

dielectric varies linearly with the area of the electrode, and the slope of the C versus A curve gives 

the dielectric constant of the material. 

Figure 5. 8. Capacitance versus Area plot of MIM junction diode with thermally converted HfO2 

as a dielectric layer sandwiched between Ti/Pt and Ti/Au electrodes. Inset shows the optical mi-

crograph of the device. 

The capacitance vs area plot for a MIM junction device is shown in figure 5.8. The bottom 

electrode was composed of 5 nm Ti and 15 nm Pt while top electrode was composed of 5 nm Ti 

followed by 45 nm of Au. The C-V measurement was done for the dielectric of thickness 10 nm 

at frequency 500 Hz with an AC excitation voltage 100 mV. Capacitance was measured sweeping 

DC voltage from -1V to 1V and vice versa with the step size of 0.05V. Capacitance value was 

independent of voltage and average of all values was taken to calculate the capacitance. Area of 

the electrode defined the area of a plate of the capacitor. Using capacitance relation, from the slope 
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of the linear fit, the dielectric constant of HfO2 was found ~ 11.5, which is almost 3 times the value 

for SiO2
153

 and h-BN154. 

To further understand the thermally oxidized HfO2, we performed I-V measurement to in-

vestigate the leakage current as a function of the applied field. We used Keithley 4200 Semicon-

ductor parameter analyzer to measure the electric properties of the device. The devices with Ti/Au 

electrodes are kept in Lakeshore cryogenic probe station chamber and pumps it overnight to reach 

the pressure down to ~1x10-6 Torr. The Keithley 4200 parameter analyzer is used to characterize 

its electrical properties. The current is measured by applying voltage once from 0 to positive volt-

age and next in another direction from 0 to negative voltage. The voltage value was increased until 

sudden jump in current was observed. The optical micrograph, AFM image and I-V plots are 

shown in figure 5.9. Figure 5.9a shows the MIM junction device used for the I-V measurement. 

AFM image of the device after oxidation shows the smooth surface of the dielectric on the top of 

Ti/Pt bottom electrode. For this device, the thickness of the dielectric was 10 nm. The area of the 

electrodes was 2 µm2, 4 µm2, 6 µm2, 8 µm2 respectively. Figure 5.9c1 represents the plot when a 

positive potential is applied across electrode L1 and the bottom electrode. The measurement was 

stopped when drain current suddenly starts to increase. We found the leakage current suddenly 

start to increase at voltage 6.8 V. Figure 5.9c2 represents the plot when negative voltage sweep 

was performed between the bottom electrode and the top electrode L1. Leakage current started to 

build up at 5.8 V. As seen from the plots on figure 5.9, the current through the HfO2 dielectric 

layer is very small (of the order of 10-10 A) for a large range of applied voltage up to 6V. This 

clearly indicates the device with HfO2 dielectric layer exhibits low leakage current and is favorable 

for large back gate voltage range. 
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Figure 5. 9. a) Optical micrograph of MIM junction diode, b) AFM image of the diode, c1) positive 

voltage sweep (0V - 1V) on electrode L1, c2) negative voltage sweep (0V - -1V), d1, d2) sweep 

on electrode B, e1, e2) sweep on electrode T. 

The value of applied voltages until leakage current starts to build up for different voltage 

sweep in different electrodes obtained from figure 5.9 is tabulated in table 5.4.   
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Electrode B L1 T 

Area(µm2) 2 4 8 

Applied Voltage (positive volt-

age sweep) 6.8 6.8 6.3 

Applied Voltage (negative volt-

age sweep) 5.8 5.9 5.3 

Table 5. 4. Value of applied voltages for the study of leakage current for the device shown in 

figure 9. 

From the table 5.4, the average applied voltage for the thermally oxidized HfO2 before 

leakage current suddenly start to build up is found ~ 6.15 V. From the measurement it is observed 

that the thermally converted HfO2 have small leakage current of the order of 10-10 A up to the 

applied field of ~ 6 MV/cm making it suitable to use in FETs as a gate dielectric.  

5.3 Summary 

In summary, we successfully transformed two dimensional HfSe2 into HfO2 using thermal 

oxidation method. The transformation was confirmed optically by monitoring the color contrast of 

the sample and from the AFM characterization. The thickness of the phase transitioned HfO2 is 

consistent with the expected thickness obtained from the mass-density relation. The surface of the 

oxide was clean and smooth. We fabricated several devices using HfO2 as a dielectric layer and 

performed C-V, I-V characterizations. The dielectric constant of the oxide is found 11.5 and can 

withstand the higher electric field up to 6 MV/cm. The lower leakage currents at field value up to 

6 MV/cm ensures the phase transitioned HfO2 can be useful to decrease the leakage current and 

increase the gate voltage range for the 2D electronic devices.  
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FUTURE WORK 

During this dissertation work, we systematically studied the thermal oxidation of Metallic 

TMDCs like TaS2, HfSe2, TiS2. These metallic TMDCs unlike the semi-conducting TMDCs 

(MOS2, MoSe2, WSe2 etc.) are air sensitive and oxidize easily. We successfully converted metallic 

TMDCs into their oxides by heating the samples in air. Further, we characterized the thermally 

oxidized dielectric and found the dielectrics are atomically flat, spatially uniform, and forms a 

nearly charge-trap free interface with the channel material. This new approach enables us to as-

semble high-quality dielectric on top of pristine TMDCs channels to form top-gated FETs while 

circumventing the constraints of ALD methods. 

C-V characterization of chemically converted Ta2O5 dielectric showed the dielectric con-

stant ~15.5. MoS2 FETs fabricated using thermally oxidized thin Ta2O5 as gate dielectric show 

nearly hysteresis-free transfer characteristics, suggesting high interface quality. MoS2 FETs with 

the thermally oxidized Ta2O5 top-gate dielectric demonstrate a current on/off ratio of ~ 106, a high 

field-effect mobility > 60 cm2V-1s-1, and a near ideal subthreshold swing (SS) of ~ 61 mV/dec at 

room temperature, along with pronounced drain-current saturation in their output characteristics. 

Thermally converted Ta2O5 showed impressive role to enhance the performance of MoS2 channel. 

But as Ta2O5 has a low band gap (~4.5 eV), we could measure the transfer characteristics for an 

only small range of back gate voltage (up to 3 V) without increasing leakage current. 

HfO2 has a large band gap (~ 5.7 V) in comparison to the Ta2O5, which gives us the freedom 

to increase the range of the voltage without increasing the leakage current. The dielectric constant 

of the HfO2 is slightly lesser than the Ta2O5 but having large band gap is useful to decrease the 

leakage current for large back gate voltages. Similar to the Ta2O5, we successfully converted HfSe2 
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into two dimensional HfO2 by using thermal oxidation and characterized them. The dielectric con-

stant of the thermally oxidized HfO2 is found to be 11.5, as expected slightly lesser than that of 

Ta2O5 (~15.5). Ta2O5, having a large band gap, decreased the leakage current as we applied higher 

voltages. We could apply the voltage up to 6 V without significantly increasing the leakage current. 

The breakdown field of the HfO2 is found 6.15 Mv/cm, which is almost 3 times the breakdown 

field of SiO2.  

As HfO2 can operate successfully for large voltages, without appreciably increasing the 

leakage current, it will be useful to fabricate FETs with thermally converted HfO2 as a dielectric. 

These FETs with HfO2 will work for a large range of gate voltages. Since, the thermal oxidation 

method produces ultraclean, spatially flat two-dimensional dielectrics, we can fabricate both top 

and bottom gated FET using PC pickup and dry transfer methods circumventing the problems with 

other forms of dielectric integration (ALD, CVD etc.).  
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ABSTRACT 

DOPED AND CHEMICALLY TRANSFORMED TRANSITION METAL 

DICHALCOGENIDES (TMDCS) FOR TWO-DIMENSIONAL (2D)  

ELECTRONICS 

 

by 
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Advisor: Dr. Zhixian Zhou 

Major: Physics 

Degree: Doctor of Philosophy 

Transition metal dichalcogenides (TMDCs) as the semiconductor counterparts of graphene 

have emerged as promising channel materials for flexible electronic and optoelectronic de-

vices. The 2D layer structure of TMDCs enables the ultimate scaling of TMDC-based devices 

down to atomic thickness. Furthermore, the absence of dangling bonds in these materials helps to 

form high quality heterostructures with ultra-clean interfaces. The main objective of this work is 

to develop novel approaches to fabricating TMDC-based 2D electronic devices such as diodes and 

transistors. In the first part, we have fabricated 2D p-n junction diodes through van der Waals 

assembly of heavily p-doped MoS2 (WSe2) and lightly n-doped MoS2 to form vertical homo-(het-

ero-) junctions, which allows to continuously tune the electron concentration on the n-side for a 

wide range. In sharp contrast to conventional p-n junction diodes, we have observed nearly expo-

nential dependence of the reverse-current on gate-voltage in our 2D p-n junction devices, which 

can be attributed to band-to-band tunneling through a gate-tunable tunneling barrier. In the second 

part, we developed a new strategy to engineer high-κ dielectrics by converting atomically thin 

metallic 2D TMDCs into high-κ dielectrics because it remains a significant challenge to deposit 



96 

 

 

uniform high-κ dielectric thin films on TMDCs with ALD due to the lack of dangling bonds on 

the surfaces of TMDCs. In our study, we converted mechanically exfoliated atomically thin layers 

of a 2D metal, TaS2 (HfSe2) into a high-κ dielectric, Ta2O5 (HfO2) by thermal oxidation. X-ray 

photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive 

spectroscopy (EDS), and atomic force microscopy (AFM) were used to understand the phase con-

version process. Capacitance-voltage (C-V) measurements were carried out to determine the die-

lectric constant of thermally oxidized dielectrics. We fabricated MoS2 field-effect transistors 

(FETs) with thermally oxidized ultra-thin and ultra-smooth Ta2O5 as top-gate and bottom-gate 

high-κ dielectric layers. We observed promising device performance, including a nearly ideal sub-

threshold swing of ~ 61 mV/dec at room temperature, negligible hysteresis, drain-current satura-

tion in the output characteristics, a high on/off ratio ~ 106, and a room temperature field-effect 

mobility exceeding 60 cm2/Vs. To further reduce the leak current and improve the device perfor-

mance, we have also investigated the chemical transformation of HfSe2 to HfO2 high-κ dielectric, 

which has significantly larger band gap than Ta2O5.  
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