Here is a fun problem from Apostol’s “Modular Functions and Dirichlet Series in Number Theory” that involves one of Ramanujan’s conjectures.

\textbf{Problem: }:  Let  \Delta(z) = q \prod_{n=1}^\infty(1-q^n)^{24} = \sum_{n=1}^\infty \tau(n)q^{n}, \quad q=e^{2\pi i z}.

Prove that \tau(n) \equiv \sigma_{11}(n) \mod 691.

\textbf{Solution:} First we note  \Delta is a cusp form of weight 12. Then we write out the q-expansions for E_6, E_6^2, and E_{12}.

E_6 = 1+ \dfrac{2\cdot 6}{B_6} \sum_{n=1}^\infty \sigma_5(n) q^n = 1-(42)(12) \sum_{n=1}^\infty \sigma_5(n) q^n

 

E_6^2= 1- (2)(12)(42) \sum_{n=1}^\infty \sigma_5(n) q^n+ (42)^2(12)^2 \sum_{n=1}^\infty \sum_{m=1}^{n-1}\sigma_5(n)\sigma(n-m)q^n

 

E_{12} = 1 - \dfrac{2(12)}{B_{12}} \sum_{n=1}^\infty \sigma_{11}(n) q^n = 1 - \dfrac{2(12)}{\dfrac{-691}{2730}} \sum_{n=1}^\infty \sigma_{11}(n) q^n = 1+ \dfrac{(24)(2730)}{691} \sum_{n=1}^\infty \sigma_{11}(n) q^n.

 

\Delta = a E_{12} + bE_6^2. Since \Delta has no constant terms, a+b=0. So a=-b.

 

We will also use the fact that \tau(1)=1.

The coefficient of q in E_{12}(z) is \dfrac{(224)(2730)}{691}.

 

The coefficient of q in E_6^2(z) is -(2)(12)(42).

So \tau(1) = 1 and

\tau(1) = \alpha\left(\dfrac{(224)(2730)}{691}\right) - \alpha(-(2)(12)(42)) = \alpha \left(\dfrac{762048}{691}\right).

So \alpha = \dfrac{691}{762048}=\dfrac{691}{(24)(756)(42)}.

Comparing coefficients of q for \Delta = a E_{12} - a E_6^2, and

\tau(n) = \alpha \left[\dfrac{(24)(2730)}{(691)} \sigma_{11}(n) +(24)(42)\sigma_5(n) -(12)^2(42)^2 \sum_{m=1}^{n-1} \sigma_5(m)\sigma_5(n-m) \right]

 

\alpha \cdot \dfrac{(24)(2730)}{691} = \dfrac{691}{(24)(756)(42)} \cdot \dfrac{(24)(2730)}{691} = \dfrac{65}{756}.

 

\alpha \cdot (24)(42) = \dfrac{691}{756}

 

\alpha \cdot (12)^2(42)^2 = \dfrac{691}{756} \cdot (12)(24) = \frac{691}{3}.   So

 

\tau(n)= \dfrac{65}{756} \sigma_{11}(n) +\dfrac{691}{756} \sigma_5(n) - \dfrac{691}{3} \sum_{m=1}^{n-1} \sigma_6(m) \sigma_5(n-m).

 

\tau(n) \equiv \dfrac{65}{756} \sigma_{11}(n) \mod 691 \equiv \dfrac{65+691}{756} \sigma_{11}(n) \equiv \dfrac{756}{756} \sigma_{11}(n) \equiv \sigma_{11}(n) \mod 691.

Written by 

Leave a Reply

Your email address will not be published. Required fields are marked *