Jump to year:


2024:

Chakkour M., Greenberg M.L. Insights into the roles of inositol hexakisphosphate kinase (IP6K1) in mammalian cellular processes. Journal of Biological Chemistry. doi: https://doi.org/10.1016/j.jbc.2024.107116

Liang, Z., Ralph-Epps, T., Schmidtke, M.W. et al. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of pyruvate dehydrogenase activity reduction in tafazzin-deficient cells. Sci Rep, 11497. https://doi.org/10.1038/s41598-024-62262-1

Liang Z., Ralph-Epps T., Schmidtke M.W., Kumar V., Greenberg M.L. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). Journal of Biological Chemistry, 300(3):105697. doi: https://doi.org/10.1016/j.jbc.2024.105697

2023:

Vijjamarri A.K., Gupta N., Onu C, Niu X., Zhang F., Kumar R., Lin Z., Greenberg M.L., Hinnebusch A.G. mRNA decapping activators Pat1 and Dhh1 regulate transcript abundance and translation to tune cellular responses to nutrient availability. Nucleic Acids Research, 51(17):9314–9336.  https://doi.org/10.1093/nar/gkad584

Vijjamarri A.K., Niu X., Vandermeulen M.D., Onu C., Zhang F., Qiu H., Gupta N., Gaikwad S., Greenberg M.L., Cullen P.J., Lin Z., and Hinnebusch A.G. Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. eLife, 12:e85545. https://doi.org/10.7554/eLife.85545

Kagan V.E, Tyurina Y.Y, Mikulska-Ruminska K., Damschroder D., Neto E.V., Lasorsa A., Kapralov A.A, Tyurin V.A., Amoscato A.A., Samovich S.N., Souryavong A.B., Dar H.H., Ramim A., Liang Z., Lazcano P., Ji J., Schmidtke M.W., Kiselyov K., Korkmaz A., Vladimirov G.K., Artyukhova M.A., Rampratap P., Cole L.K., Niyatie A., Baker E.K., Peterson J., Hatch G.H., Atkinson J., Vockley J., Kühn B., Wessells R., van der Wel P.C.A., Bahar I., Bayir H., Greenberg M.L. Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome. Nature Metabolism,  5:2184–2205 doi: https://doi.org/10.1038/s42255-023-00926-4

Case K.C., Beltman R.J., Pflum M.K.H., Greenberg M.L. Valproate regulates inositol synthesis by reducing expression of myo‑inositol‑3‑phosphate synthase. Scientific Reports, 13:14844 doi: https://doi.org/10.1038/s41598-023-41936-2

Vo L., Schmidtke M.W., Da Rosa-Junior N.T., Ren M., Schlame M., Greenberg M.L. Cardiolipin metabolism regulates expression of muscle transcription factor MyoD1 and muscle development. Journal of Biological Chemistry, 299(3):102978. doi: https://doi.org/10.1016/j.jbc.2023.102978.

2022:

Lazcano P., Schmidtke M.W., Onu C., Greenberg M.L. Phosphatidic acid inhibits inositol synthesis by inducing nuclear translocation of kinase IP6K1 and repression of myo-inositol-3-P synthase. Journal of Biological Chemistry, 298(9):102363. doi: https://doi.org/10.1016/j.jbc.2022.102363.

Mitra A., Vo L., Soukar I., Chaubal A., Greenberg M.L., Pile L.A. Isoforms of the transcriptional cofactor SIN3 differentially regulate genes necessary for energy metabolism and cell survival. Biochim Biophys Acta Mol Cell Research, 1869(10):119322. doi:10.1016/j.bbamcr.2022.119322.

Liang Z., Schmidtke M.W., Greenberg M.L. Current Knowledge on the Role of Cardiolipin Remodeling in the Context of Lipid Oxidation and Barth Syndrome. Frontiers in Molecular Biosciences, 9. doi:10.3389/fmolb.2022.915301.

Case K.C., Schmidtke M.W., Greenberg M.L. The paradoxical role of inositol in cancer: a consequence of the metabolic state of a tumor. Cancer and Metastasis Reviews. doi:10.1007/s10555-022-10032-8.

Suliman M., Case K.C., Schmidtke M.W., Lazcano P., Onu C.J., Greenberg M.L. Inositol depletion regulates phospholipid metabolism and activates stress signaling in HEK293T cells. Biochim Biophys Acta Mol Cell Biol Lipids, 1867(6):159137. doi:10.1016/j.bbalip.2022.159137.

Ji J., Damschroder D., Bessert D., Lazcano P., Wessells R., Reynolds C.A., Greenberg M.L. NAD supplementation improves mitochondrial performance of cardiolipin mutants. Biochim Biophys Acta Mol Cell Biol Lipids, 1867(4):159094. doi:10.1016/j.bbalip.2021.159094.

Ji J., Greenberg M.L. Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome. Journal of Inherited Metabolic Disease, 2021;1-12. doi:10.1002/jimd.12447.

2021:

Ralph-Epps T., Onu C.J., Vo L., Schmidtke M.W., Le A., Greenberg M.L. Studying Lipid-Related Pathophysiology using the Yeast Model. Frontiers in Physiology – Lipid and Fatty Acid Research, 12:768411. doi: 10.3389/fphys.2021.768411.

Salsaa M., Aziz K., Lazcano P., Schmidtke M.W., Tarsio M., Hüttemann M., Kane P.M., Greenberg M.L. Valproate activates the Snf1 kinase in Saccharomyces cerevisiae by decreasing the cytosolic pH. Journal of Biological Chemistry, 297(4).

Suliman M., Schmidtke M.W., Greenberg M.L. The role of the UPR pathway in the pathophysiology and treatment of bipolar disorder. Frontiers in Cellular Neuroscience – Cellular Neuropathology, 15:735622.

Suliman M., Schmidtke M.W., Greenberg M.L. myo-inositol bioassay utilizing an auxotrophic strain of S. cerevisiae. Journal of Microbiological Methods, 189:106300.

Liang Z., Ji J., Vo L., Schmidtke M.W., Greenberg M.L. Lipids: Biosynthesis, Remodeling, and Turnover of Cardiolipin. Encyclopedia of Biological Chemistry, Third Edition, 2:684-694.

2020:

Salsaa M., Pereira B., Liu J., Yu W., Jadhav S., Hüttemann M., Greenberg M.L. Valproate inhibits mitochondrial bioenergetics and increases glycolysis in Saccharomyces cerevisiae. Sci. Rep., 10:11785.

Li Y., Lou W., Grevel A., Böttinger L., Liang Z., Ji J., Patil V.A., Liu J., Ye C., Hüttemann M., Becker T., Greenberg M.L. Cardiolipin-deficient cells have decreased levels of the iron-sulfur biogenesis protein frataxin. J. Biol. Chem., 295:11928-11937.

Patil V.A., Li Y., Ji J., Greenberg M.L. Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 1865(2).

2019:

Xu Y., Anji M., Donelian A., Yu W., Greenberg M.L., Ren M., Owusu-Ansah E., Schlame M. Assembly of the complexes of oxidative phosphorylation triggers the remodeling of cardiolipin. PNAS, 116:11235-11240.

Li Y., Lou W., Raja V., Denis S., Yu W., Schmidtke M.W., Reynolds C.A., Schlame M., Houtkooper R.H., Greenberg M.L. Cardiolipin-induced activation of pyruvate dehydrogenase links mitochondrial lipid biosynthesis to TCA cycle function. J. Biol. Chem., 294:11568-11578.

Raja V., Salsaa M., Joshi A.S., Li Y., van Roermund C.W.T., Saadat N., Lazcano P., Schmidtke M., Hüttemann M., Gupta S.V., Wanders R.J.A., Greenberg M.L. Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 1864(5):654-661.

2018:

Case K.C., Salsaa M., Yu W., Greenberg M.L. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. In: Handb. Exp. Pharmacol. Springer, Berlin, Heidelberg.

Yedulla N.R., Naik A.R., Kokotovich K.M., Yu W., Greenberg M.L., Jena B.P. Valproate inhibits glucose-stimulated insulin secretion in beta cells. Histochem Cell Biol, 150(4):395-401.

Lou W., Ting H.C., Reynolds C.A., Tyurina Y.Y., Tyurin V.A., Li Y., Ji J., Yu W., Liang Z., Stoyanovsky D.A., Anthonymuthu T.S., Frasso M.A., Wipf P., Greenberger J.S., Bayir H., Kagan V.E., Greenberg M.L. Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 1863(10):1354-1368.

Lou W., Reynolds C.A., Li Y., Liu J., Hüttemann M., Schlame M., Stevenson D., Strathdee D., Greenberg M.L. Loss of tafazzin results in decreased myoblast differentiation in C2C12 cells: A myoblast model of Barth syndrome and cardiolipin deficiency. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids, 1863(8):857-865.

2017:

Shen Z., Li Y., Gasparski A.N., Abeliovich H., and Greenberg M.L.  Cardiolipin regulates mitophagy through the PKC pathway. J. Biol. Chem., 292:2916-2923.

Yu W., Daniel J., Mehta D., Maddipati K.R., and Greenberg M.L.  MCK1 is a novel regulator of myo-inositol phosphate synthase that is required for inhibition of inositol synthesis by the mood stabilizer valproate.  PLOS ONE, 12(8):e0182534.

Tyurina Y.Y., Lou W., Qu F., Tyurin V.A., Mohammadyani D., Liu J., Hüttemann M., Frasso M.A., Wipf P., Bayir H., Greenberg M.L., and Kagan V.E.  Lipidomics characterization of biosynthetic and remodeling pathways of cardiolipins in genetically and nutritionally manipulated yeast cells. ACS Chem Biol, 12:265-281.

Schlame M. and Greenberg M.L. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta, 1862:3-7.

Salsaa M., Case K., and Greenberg M.L. Orchestrating phospholipid biosynthesis: Phosphatidic acid conducts and Opi1p performs. J. Biol. Chem., 292(45):18729-18730.

Raja V., Reynolds C. A., and Greenberg M.L.  Barth syndrome: A life-threatening disorder caused by abnormal cardiolipin remodeling.  Journal of Rare Diseases Research & Treatment, 2(2):58-62.

Raja V., Joshi A.S., Li G., Maddipati K.R., and Greenberg M.L.  Loss of cardiolipin leads to perturbation of acetyl CoA synthesis. J. Biol. Chem., 292:1092 – 1102.

Jadhav S., Russo S., Cowart L.A., and Greenberg M.L.  Inositol depletion induced by acute treatment of the bipolar disorder drug valproate increases levels of phytosphingosine. J. Biol. Chem., 292:4953-4959.

2016:

Yu W., Ye C., and Greenberg M.L. Inositol hexakisphosphate kinase 1 (IP6K1) regulates inositol synthesis in mammalian cells.  J. Biol. Chem., 291:10437-10444. *JBC Paper of the week.

Yu W. and Greenberg M.L. Inositol depletion, GSK3 inhibition, and bipolar disorder. Future Neurol. 11:135-148.

Ye C., Shen Z., and Greenberg M.L. Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function.  J. Bioenerg. Biomemb., 48:113–123.

Kagan V.E., Jiang J., Huang Z., Tyurina Y.Y., Desbourdes C., Cottet-Rousselle C., Dar H., Verma M., Tyruin V., Kapralov A.A., Cheikhi A., Mao G., Stolz D., St. Croix C.M., Watkins S., Shen S., Li Y., Greenberg M.L., Tokarska-Schlattner M., Boissan M., Lacombe M., Epand R.M., Chu C.T., Mallampalli R., Bayir H., and Schlattner U.  NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death and Differentiation, 23:1140-1151.

Joshi A.S., Fei N., and Greenberg M.L. Get1p and Get2p are required for maintenance of mitochondrial morphology and normal cardiolipin levels.  FEMS Yeast Res., 16(3):fow019.

Jadhav S., Russo S., Cottier S., Schneiter R., Cowart A., and Greenberg M.L.  Valproate induces the unfolded protein response by increasing ceramide levels. J. Biol. Chem., 291:22253-22261.

2015:

Ye C. and Greenberg M.L. Inositol synthesis regulates activation of GSK-3α in neuronal cells. J. Neurochem. 133:273-283.

Shen Z., Ye C., McCain K., and Greenberg M.L. The role of cardiolipin in cardiovascular health.  BioMed. Res. International, 2015:891707.

Deranieh R.M., Shi Y., Tarsio M., Chen Y., McCaffery J.M., Kane P.M., and Greenberg M.L.  Inositol depletion perturbs the vacuolar-ATPase: A novel mechanism of action of valproate.  J. Biol. Chem., 290:27460-27472.

2014:

Ye C., Lou W., Li Y., Chatzispyrou I.A., Hüttemann M., Lee I., Houtkooper R.H., Vaz F.M., Chen S., and Greenberg M.L. Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and lifespan defects in the tafazzin mutant: Implications for Barth syndrome. J. Biol. Chem., 289:3114-3125.

Raja V. and Greenberg M.L. The functions of cardiolipin in cellular metabolism – potential modifiers of the Barth syndrome phenotype.  Chemistry and Physics of Lipids, 179:49-56.

Jadhav S. and Greenberg M.L.  Harnessing the power of yeast to elucidate the role of sphingolipids in psychiatric disorders.  Clinical Lipidology, 9:533-551.

2013:

Ye C., Bandara W.M.M.S., and Greenberg M.L.  Regulation of inositol metabolism is fine-tuned by inositol pyrophosphates in Saccharomyces cerevisiae. J. Biol. Chem., 288:24898-24908. *JBC Paper of the week.

Patil V.A., Fox J.L., Gohil V.M., Winge D.R., and Greenberg M.L.  Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.  J. Biol. Chem., 288:1696-1705. PMCID 3548480

Patil V.A. and Greenberg M.L. Cardiolipin-mediated cellular signaling. Adv Exp Med Biol, 991:195-213.

Deranieh R.M., Joshi A.S., and Greenberg M.L. Thin-layer chromatography of phospholipids.  Methods Mol Biol 1033:21-27.

Deranieh R.M., He Q., Caruso J.A., and Greenberg M.L.  Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis.  J. Biol. Chem., 288:26822-26833.

2012:

Joshi A.S., Thompson M.N., Fei N., Hüttemann M., and Greenberg M.L. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae.  J. Biol. Chem., 287:17589-17597.    PMCID 3366806

Deranieh R.M., Greenberg M.L., Le Calvez P., Mooney M., and Migaud M.E.  Probing myo-inositol 1-phosphate synthase with multisubstrate adducts. Organic and Biomolecular Chemistry, 10:9601-9619.

Chang P., Orabi B, Deranieh R.M., Dham M., Hoeller O., Shimshoni J.A., Yagen B., Bialer M., Greenberg M.L., Walker M.C., and Williams R.S.B.  The anti-epileptic valproic acid and other medium chain fatty acids reduce phosphoinositide production independently of inositol in Dictyostelium.  Disease Models and Mechanisms, 5:115-124.

Angelini R., Vitale R., Patil V., Cocco T., Ludwig B., Greenberg M.L., and Corcelli A.  Lipidomics of intact mitochondria by MALDI-TOF/MS.  J. Lipid Res., 53:1417-1425. PMCID 3371254

2010:

Chen S., Liu D., Finley III R., and Greenberg M.L. Loss of mitochondrial DNA in the yeast cardiolipin synthase mutant crd1 leads to up-regulation of Swe1p. J. Biol. Chem., 285:10397-10407. *JBC Paper of the week. PMCID 2856246

2009:

Zhou J., Zhong Q., Li G., and Greenberg M.L.  Loss of cardiolipin leads to longevity defects that are alleviated by down-regulation of the HOG1 stress response pathway. J. Biol. Chem., 284:18106-18114.  PMCID 2709391

Joshi A.S., Zhou J., Gohil V.M., Chen S., and Greenberg M.L. Cellular functions of cardiolipin in yeast. Biochim Biophys Acta. 1793:212-218. PMCID 2788820

Gohil V.M. and Greenberg M.L.  Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand.  J. Cell Biol. 184:469-472.

Gebert N., Joshi A.S., Kutik S., Becker T., McKenzie M., Guan X.L., Mooga V.P., Stroud D.A., Kulkarni G., Wenk M.R., Rehling P., Meisinger C., Ryan M.T., Wiedermann N., Greenberg M.L., and Pfanner N.  Mitochondrial cardiolipin involved in outer membrane protein biogenesis:  Implications for Barth syndrome.  Current Biology 19:2133-2139.

Ding D., Shi Y., Shaltiel G., Azab A.N., Campbell A., Agam G., and Greenberg M.L.  Yeast bioassay for identification of inositol depleting compounds.  World J. Biol. Psych., 10:893-899.

Deranieh R.M. and Greenberg M.L. Cellular consequences of inositol depletion.  Biochem. Soc. Trans. 37:1099-1103.

Azab A.N., Mehta D.V., Chesebro J.E., and Greenberg M.L.  Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects – a potential mood stabilizing drug.  Life Sciences, 84:38-44.

2008:

Chen S., Tarsio M., Kane P.M., and Greenberg M.L.  Cardiolipin mediates cross talk between mitochondria and the vacuole.  Mol. Biol. Cell, 19:5047-5058.

Chen S., He Q., and Greenberg M.L.  Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth.  Mol. Microbiol., 68:1061-1072.

Azab A.N., Ishak J.F., Kaplanski J., Delbar V., and Greenberg M.L.  Mechanisms of action of the mood stabilizer valproate: a focus on GSK-3 inhibition.  Future Neurology, 3:433-445.

Azab A.N., Agam G., Kaplanski J., Delbar V., and Greenberg M.L.  Inositol depletion – a good or bad outcome of valproate treatment.  Future Neurology, 3:275-286.

2007:

Zhong Q., Li G., Gvozdenovic-Jeremic J., and Greenberg M.L.  Up-regulation of the cell integrity pathway in Saccharomyces cerevisiae suppresses temperature sensitivity of the pgs1D mutant.  J. Biol. Chem., 282:15946–15953.

Li G., Chen S., Thompson M.N., and Greenberg M.L. New insights into the regulation of cardiolipin biosynthesis in yeast: Implications for Barth syndrome.  Biochim Biophys Acta, 1771:432-41.

Azab A.N., He Q., Ju S., Li G., and Greenberg M.L.  Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol. Microbiol. 63:1248-1258.

Azab A.N. and Greenberg M.L.  Anticonvulsant Efficacy of Valproate-like Carboxylic Acids – A Potential Target for Anti-Bipolar Therapy.  Bipolar Disorders, 9:197-205.

Amigues E., Greenberg M.L., Ju S., Chen Y., and Migaud M.E.  Synthesis of spirocyclophospho-glucoses and glucitols.  Tetrahedron, 63:10042-10053.

2006:

Shi Y., Azab A.N., Thompson M.N., and Greenberg M.L.  Inositol phosphates and phosphoinositides in health and disease.  In: Biology of Inositols and Phosphoinositides, Majumder, A.L., and Biswas, B.B., eds., Springer Press, Subcellular Biochemistry 39:265-292.

Azab A.N. and Greenberg M.L.  The Lipid Connection to Bipolar Disorder.  Future Neurology, 1:505-513.

2005:

Zhong Q., Gvozdenovic-Jeremic J., Zhou J., Webster P., and Greenberg M.L.  Loss of Function of KRE5 Suppresses Temperature Sensitivity of Mutants Lacking Mitochondrial Anionic Lipids. Mol. Biol. Cell, 16:665-675.

Zhong Q. and Greenberg M.L.  Deficiency in mitochondrial anionic phospholipid synthesis impairs cell wall biogenesis.  Biochem Soc Trans. 33:1158-61.

Vaden D. L., Gohil V.M., Gu Z., and Greenberg M.L.  Separation of Yeast Phospholipids Using One-Dimensional Thin-Layer Chromatography. Anal. Biochem., 338:162-164.

Shi Y., Vaden D.L., Ju S., Ding D., Geiger J.H., and Greenberg M.L.  Genetic perturbation of glycolysis results in inhibition of de novo inositol biosynthesis. J. Biol. Chem., 280:41805-10.

Schlame M, Ren M, Xu Y, Greenberg ML, Haller I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids,138:38-49.

Gohil V.M., Thompson M.N., and Greenberg M.L. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae.  J. Biol. Chem., 280:35410-35416.

Gohil V.M., Gvozdenovic-Jeremic J., Schlame M., and Greenberg M.L. Binding of 10-N-nonyl acridine orange to cardiolipin deficient yeast cells:  implications for assay of cardiolipin. Anal. Biochem., 343:350-352.

2004:

Zhong Q., Gohil V., Ma L., and Greenberg M.L.  Absence of Cardiolipin Results in Temperature Sensitivity, Respiratory Defects, and Mitochondrial DNA Instability Independent of pet56.  J. Biol. Chem., 279:32294-32300.

Shaltiel G., Shamir A., Shapiro J., Ding D., Dalton E., Bialer M., Harwood A.J., Belmaker R.H., Greenberg M.L., Agam G. Valproate Decreases Inositol Biosynthesis. Biol. Psych., 56:868-874.

Ma L., Vaz F.M., Gu Z., Wanders R.J.A., and Greenberg M.L.  The human TAZ gene complements mitochondrial dysfunction in the yeast tazΔ mutant-Implications for Barth syndrome. J. Biol. Chem., 279:44394-44399.

Ju S., Shaltiel G., Shamir A., Agam G., and Greenberg M.L. Human 1-D-myo-Inositol 3-P Synthase Is Functional in Yeast. J. Biol. Chem., 279:21759-21765.

Ju S., and Greenberg M.L.  1D-myo-inositol 3-P synthase: Conservation, regulation, and potential target of mood stabilizers. Clinical Neuroscience Research, 4:181-187.

He Q. and Greenberg M.L. Posttranslational regulation of phosphatidylglycerolphosphate synthase in response to inositol. Mol. Microbiol., 53:1243-1249.

Gu Z., Valianpour F., Chen S., Vaz F.M., Hakkaart G.A., Wanders R.J.A., and Greenberg M.L. Aberrant Cardiolipin Metabolism in the Yeast taz1 Mutant: A Model for Barth Syndrome. Mol. Microbiol. 55:149-158.

Gohil V.M., Hayes P., Matsuyama S., Schägger H., Schlame M., and Greenberg M.L.  Cardiolipin Biosynthesis and Mitochondrial Respiratory Chain Function are Interdependent. J. Biol. Chem., 279:42612-42618.

2003:

Zhong Q. and Greenberg M.L.  Regulation of Phosphatidylgycerolphosphate Synthase by Inositol in Saccharomyces cerevisiae Is Not at the Level of PGS1 mRNA abundance.  J. Biol. Chem. 278:33978-33984.

Shamir A., Shaltiel G., Greenberg M.L., Belmaker R.H., and Agam M.L. The Effect of Lithium on Expression of Genes for Inositol Biosynthetic Enzymes in Mouse Hippocampus; a Comparison with the Yeast Model.  Mol. Brain Res. 115:104-110.

Pfeiffer K., Gohil V., Stuart R.A., Hunte C., Brandt U., Greenberg M.L., and Schägger H. Cardiolipin Stabilizes Respiratory Chain Supercomplexes.  J. Biol. Chem., 278: 52873-80.

Ju S. and Greenberg M.L. Valproate Disrupts Regulation of Inositol Responsive Genes and Alters Regulation of Phospholipid Biosynthesis. Mol. Microbiol.  49:1595-1603.

Ding D. and Greenberg M.L. Lithium and Valproate Decrease the Membrane Phosphatidylinositol/Phosphatidylcholine Ratio.  Mol. Microbiol., 47:373-381.

2002:

Shaldubina A., Ju S., Vaden D.L., Ding D., Belmaker R.H., and Greenberg M.L. Epi-Inositol Regulates Expression of the Yeast INO1 Gene Encoding Inositol-1-P Synthase. Mol. Psychiatry, 7, 174-180.

Koshkin V. and Greenberg M.L.  Cardiolipin Prevents Rate-Dependent Uncoupling and Provides Osmotic Stability in Yeast Mitochondria. Biochem. J.,364, 317-322.

Gu Z., Gohil V., Zhong Q., Schlame M., and Greenberg M.L.  The Biosynthesis and Remodeling of Cardiolipin.  In: Glycerolipid Metabolizing Enzymes, Haldar, D., ed., Kerala:  Research Signpost Press.

Agam G., Shamir A., Shaltiel G., Greenberg M.L. Myo-inositol-1-phosphate (MIP) Synthase: a Possible New Target for Antibipolar Drugs. Bipolar Disord, 4, 15-20.

2001:

Vaden D.L., Ding D., Peterson B., and Greenberg M.L.  Lithium and Valproate Decrease Inositol Mass and Increase Expression of the Yeast INO1 and INO2 Genes for Inositol Biosynthesis. J. Biol. Chem., 276, 15466-15471.

2000:

Schlame M., Rua D., and Greenberg M.L.  The Biosynthesis and Functional Role of Cardiolipin. Prog. Lipid Res. 39:257-288.

Murray M. and Greenberg M.L.  Expression of Yeast INM1 Encoding Inositol Monophosphatase is Regulated by Inositol, Carbon Source, and Growth Stage and is Decreased by Lithium and Valproate. Mol. Microbiol. 36:651-661.

Koshkin V. and Greenberg M.L.  Oxidative Phosphorylation in Cardiolipin-Lacking Yeast Mitochondria. Biochem. J., 347, 687-691.

Jiang F., Ryan M.T., Schlame M., Zhao M., Gu Z., Klingenberg M.L., Pfanner N., and Greenberg M.L.  Absence of Cardiolipin in the crd1 Null Mutant Results in Decreased Mitochondrial Membrane Potential and Reduced Mitochondrial Function. J. Biol. Chem., 275, 22387-22394.

1999:

Jiang F., Gu Z., Granger J., and Greenberg M.L.  Cardiolipin Synthase Expression is Essential for Growth at Elevated Temperature and is Regulated by Factors Affecting Mitochondrial Development. Mol. Microbiol. 31, 373-380.

1998:

Zhao M., Schlame M., Rua D., and Greenberg M.L.  Cardiolipin Synthase is Associated with a Large Complex in Yeast Mitochondria.  J. Biol. Chem., 273, 2402-2408.

Zhao M., Rua D., Hajra A., and Greenberg M.L.  Enzymatic Synthesis of [3H]CDP-Diacylglycerol.  Anal. Biochem. 258, 48-52.

Jiang F., Kelly B.L., Hagopian K., and Greenberg M.L.  Purification and Characterization of Phosphatidylglycerolphosphate Synthase from Schizosaccharomyces pombe.  J. Biol. Chem., 273, 4681-4688.

1997:

Schlame M. and Greenberg M.L.  Cardiolipin Synthase from Yeast.  Biochim. Biophys. Acta  1348, 201-206.

Murray M. and Greenberg M.L.  Regulation of Inositol Monophosphatase in Saccharomyces cerevisiae.  Mol. Microbiol. 25, 541-546.

Minskoff S. A. and Greenberg M.L.  Phosphatidylglycerophosphate Synthase from Yeast.  Biochim. Biophys. Acta  1348, 187-191.

Jiang F., Rizavi H. S., and Greenberg M.L.  Cardiolipin Is Not Essential for Growth of Saccharomyces cerevisiae on Fermentable or Non-fermentable Carbon Sources.  Mol. Microbiol. 26, 481-491.

1996:

Greenberg M.L. and Lopes J.M.  Genetic Regulation of Phospholipid Biosynthesis in Yeast.  Microbiolog. Rev., 60, 1-20.

1995:

Schlame M., Zhao M., Rua D., Haldar D. and Greenberg M.L.  Kinetic Analysis of Cardiolipin Synthase:  A Membrane Enzyme with Two Glycerophospholipid Substrates.  Lipids, 30, 633-640.

1994:

Minskoff S.A., Racenis P.V., Granger J., Larkins L., Hajra A., and Greenberg M.L.   Regulation of Phosphatidic Acid Biosynthetic Enzymes in Saccharomyces cerevisiae.  J. Lipid Research  35, 2254-2262.

Kelly B.L. and Greenberg M.L.  Expression in Yeast of an E. coli Gene Encoding a Phospholipid Biosynthetic Enzyme.  Gene 147, 111-114.

1993:

Greenberg M.L. and Axelrod D.  Anomalously Slow Diffusion of Lipid Probes in Membranes of the Yeast Saccharomyces cerevisiae.  J. Membrane Biol. 131, 115-127.

1992:

Racenis P.V., Lai J.L., Das A.K., Hajra A.K., and Greenberg M.L.  Characterization of Acyl/Alkyl-Dihydroxyacetone Phosphate Reductase from Saccharomyces cerevisiae.  J. Bact. 174, 5702-5710.

Minskoff S.A., Gaynor P.M., and Greenberg M.L. Mutant Enrichment in Schizosaccharomyces pombe by Inositol-less Death.  J. Bact. 174, 4078-4085.

Gaynor P.M. and Greenberg M.L.  Regulation of CDP-Diacylglycerol Synthesis and Utilization by Inositol and Choline in Schizosaccharomyces pombe.  J. Bact. 174,  5711-5718.

1991:

Karkhoff-Schweizer R., Kelly B.L. and Greenberg M.L.  Characterization and Regulation of Phosphatidylglycerolphosphate Synthase in Schizosaccharomyces pombe.   J. Bact. 173, 6132-6138.

Gaynor P., Hubbell S., Schmidt A., Lina R.A., Minskoff S.A., and Greenberg M.L.  Regulation of Phosphatidylglycerolphosphate Synthase Expression in Saccharomyces cerevisiae by Factors which Affect Mitochondrial Development.  J. Bact. 173, 6124-6131.

1990:

Tamai K.T. and Greenberg M.L.  Biochemical Characterization and Regulation of Cardiolipin Synthase in Saccharomyces cerevisiae.  Biochim. Biophys. Acta  1046, 214-222.

Kelly B.L. and Greenberg M.L. Characterization and Regulation of Phosphatidylglycerolphosphate Phosphatase in Saccharomyces cerevisiae.  Biochim. Biophys. Acta 1046,144-150.

1988:

Greenberg M.L., Hubbell S., and Lam C.  Inositol Regulates Phosphatidylglycerolphosphate Synthase Expression in Saccharomyces cerevisiae.  Mol. and Cell Biol. 8, 4773-4779.

1986:

Skvirsky R., Greenberg M.L., Myers P.L., and Greer H.  A New Negative Control Gene for Amino Acid Biosynthesis in Saccharomyces cerevisiae.  Curr. Genet. 10, 495-501.

Myers P.L., Skvirsky R.C., Greenberg M.L., and Greer H.  Negative Regulatory Gene for General Control of Amino Acid Biosynthesis in Yeast.  Mol. Cell. Biol. 6, 3150-3155.

Greenberg M.L., Myers P.L., Skvirsky R.C., and Greer H.  New Positive and Negative Regulators for General Control of Amino Acid Biosynthesis in Saccharomyces cerevisiae.  Mol. Cell. Biol. 6, 1820-1829.

1983:

Greenberg M.L., Klig L., Shicker B., Letts V., and Henry S.A.  Yeast Mutant Defective in Phosphatidylcholine Synthesis.  J. Bacteriol.  153, 791-799.

1982:

Greenberg M.L., Reiner B., and Henry S.A.  Regulatory Mutations of Inositol Biosynthesis in Yeast:  Isolation of Inositol-Excreting Mutants.  Genetics 100, 19-33.

Greenberg M.L., Goldwasser P., and Henry S.A.  Characterization of a Regulatory Mutant Constitutive for Synthesis of Inositol-1-Phosphate Synthase.  Molec. Gen. Genetics 186, 157-163.

1981:

Henry S.A., Greenberg M.L., Letts V.A., Shicker B., Klig L., and Atkinson K.D.  Genetic Regulation of Phospholipid Synthesis in Yeast, Proceedings of Tenth International Symposium on Yeast.  In Current Developments in Yeast Research:  Advances in Biotechnology, pp. 311-316, Stewart, G., and Russell, J., eds., New York:  Pergamon Press.

1980:

Birshtein B.K., Campbell R., and Greenberg M.L.  Aγ2b-γ2a Hybrid Immunoglobulin Heavy Chain Produced by a Variant of the MPC11 Mouse Myeloma Cell Line.  Biochemistry 19, 1730-1737.